Virtual Poster Session

Welcome to the Virtual Poster Session, a new and powerful tool for networking and information exchange. Here you can share your work, search though the poster library, and start a dialogue with others in your field. Each uploaded poster that pertains to force measurement and testing can currently be used to apply for an academic travel scholarship; please see the Scholarships page for application details and deadlines.

Static Foot Structure May Predict Midfoot Mechanics

Conference: International Foot and Ankle Biomechanics
Abstract: INTRODUCTION: Clinical interventions for foot injury prevention are often prescribed based on static measures of foot structure. However, this convention merits further investigation as the static-dynamic relationship has only been explored in walking and running. The primary aim of this study was to explore the relationship between static foot structure and dynamic midfoot kinematics and kinetics during a barefoot single-leg landing. METHODS: 48 females (age=20.4±1.8 yr, height=1.6±0.06 m, weight=57.3±5.5 kg) completed the study. Standing arch height index (AHI) was measured using the Arch Height Index Measurement System. Skin markers were attached using a multi-segment foot model by Bruening et al.1 A14-camera motion capture system (Vicon) was used to sample kinematic data at 250Hz while two force platforms (AMTI) sampled kinetic data at 1000Hz. A static trial was captured then subjects hung from wooden rings and performed barefoot single-leg drop landings from a height of 0.4m. Metrics were calculated in Visual 3D (C-motion, Inc.) to obtain static midfoot angle (MA), midtarsal range of motion (ROM), and midtarsal work. PCCs were calculated for static and dynamic variables using paired t-tests in SAS. RESULTS: AHI was correlated negatively with sagittal plane midtarsal ROM (r=-0.32032, p=0.0264) and positively with midtarsal work (r=0.33180, p=0.0212). MA was correlated positively with sagittal plane midtarsal ROM (r=0.48336, p=0.0005) and negatively with midtarsal work (r=-0.32321, p=0.0250). DISCUSSION/CONCLUSION: Static foot structure may be a valuable clinical tool in assessing midfoot function relating to injury risk in athletes, who participate in high-impact loading activities, as well as in pathological populations.
Listed In: Biomechanics, Orthopedic Research, Physical Therapy, Sports Science,
Tagged In: arch height, drop landing, joint work, midtarsal joint

View PDF | Contact Author