Analysis of lower limb biomechanics during jumping and landing tasks are often used to assess lower limb injury risk in research and applied practice within professional team sports. However, there are limited instances of these movements being incorporated into research focusing on Achilles tendinopathy development. PURPOSE: To investigate whether differences existed in lower limb motion and moments during jumping and landing between individuals who develop Achilles tendinopathy and those who remain injury free. METHODS: Male professional Rugby Union players without lower limb injury (n = 43) were compared to players who sustained Achilles tendinopathy (n = 8). Five single-leg drop vertical jumps per leg were performed at the start of their pre-season training. Motion of the lower limbs were recorded synchronously with ground reaction force. RESULTS: Players who sustained Achilles tendinopathy demonstrated significantly increased rear-foot inversion-eversion range of motion (p = 0.03), a reduction in dorsi-plantarflexion range of motion (p = 0.01) and knee flexion-extension range of motion (p = 0.03). Peak dorsiflexion velocity (p = 0.02) and peak knee flexion velocity were also reduced in those with Achilles tendinopathy (p = 0.03). No differences in hip joint kinematics were observed. Controls displayed slightly larger peak plantarflexion moments; however this difference was not statistically significant (p = 0.15, g = 0.60). CONCLUSIONS: The findings indicated that players who subsequently developed Achilles tendinopathy displayed an altered single leg landing strategy when compared to players who did not sustain injury; with motion of the ankle joint and rear-foot most influenced.
INTRODUCTION. Increased age is associated with changes in gait mechanics and decreased muscle function. As the knee extensors (KE) are prime movers in gait, altered KE function (strength, power, fatigability) could alter knee mechanics. This study aimed to determine whether a bout of exercise induces KE fatigue and changes in knee mechanics in two older groups with different physical activity levels: sedentary adults and runners.
METHODS. Adults aged 55-70 who were either runners (≥15 miles/wk) or sedentary (≤3x30 min exercise bouts/wk) completed gait and strength testing before and after a 30 minute treadmill walk (30MTW). Joint kinematics were calculated using the point cluster technique. Externally-referenced moments were calculated using inverse dynamics. KE power and isometric strength were assessed via isokinetic dynamometry. Changes in KE power and knee mechanics were calculated; within-group changes were examined using paired t-tests (p<0.1).
RESULTS. Sedentary adults displayed a drop in KE power at 6/8 contraction velocities vs. 2/8 in runners (poster Figure 2). Both groups showed an increase in knee flexion angle at heel strike and runners displayed decreased knee flexion moments post-30MTW (poster Figure 3).
CONCLUSIONS. Vigorous physical activity may allow older adults to maintain fatigue resistance. Sensitivity of knee mechanics to KE fatigue remains unclear as few changes were seen even in a fatigued group. Global, rather than discrete, measures of joint function may provide more sensitive measures of the response of gait mechanics to muscle fatigue and may allow for a more complete picture of the impact of muscle function on gait.
Physical testing of TKR systems to assess stability is an important aspect in screening candidate TKR designs which can be expensive and time consuming. Costs can be reduced by utilizing 3D printed plastic components. The objective is to compare the kinematics and intrinsic constraint of metal-on-plastic (M-P) and plastic-on-plastic (P-P) implants under physiologically relevant loading, with and without simulated ligament contributions, in order to elucidate the effects of material pairings. A cruciate retaining TKR implant was created by combining a 3D printed ABS plastic tibial component with the standard cobalt chrome femoral component, as well as a 3D printed ABS plastic replica femoral component. This results in both M-P and P-P articulations that were mounted to a VIVO 6-DOF joint motion simulator (AMTI, Watertown, MA), which was used for in vitro constraint testing using functional laxity tests. Anterior-posterior (AP) and internal-external (IE) constraint was measured based on resulting deviations from the normal path when superimposed AP and IE loads were applied. Ligaments were simulated as tension-only point-to-point springs using the soft tissue modelling capabilities of the VIVO. Different kinematics were observed between the M-P and P-P implants which could be the result of different initial implant positioning on the joint motion simulator or due to “stiction” of the P-P implant. The functional laxity of the implant system tested appears to be relatively insensitive to the material pairing and ligament presence. These relationships are complex and hard to predict, which underscores the importance of pre-clinical in vitro testing.
Multisensory integration is driven by a process of sensory reweighting during which each input is assigned a weight depending on the current functional state of a particular sensory system, the task itself and the context in which it is being performed. The primary aim of this study was to determine which of the two inputs between ankle proprioception and vision is upweighed during a postural control task when the two inputs provide conflicting information pertaining to direction of body sway. Achilles tendon vibration and visual flow were used to create sensory conflict, which produced center of pressure (COP) sway in opposite directions when applied independently. The baseline conditions (1) consisted of eyes open quiet stance condition, eyes closed with vibration applied on the Achilles tendons (2) and eyes open with visual flow (3). The experimental condition simultaneously combined vibration and visual flow. COP excursions were recorded in 10 healthy young adults to evaluate the magnitude and direction of sway produced by vibration and/or visual flow. Additionally, lower body joint kinematics were evaluated to understand the multi-segmental strategies and their adaptation to the various sensory manipulations. The results showed that visual flow moderated the extent of backward COP and ankle angular displacement produced when vibration was applied independently. Additionally, visual flow was also found to reduce the extent of predominant hip strategy generated by ankle vibration. The findings show that visual input plays a significant role in maintaining stability and that ankle proprioception is downweighed during conflicts between vision and proprioception. This has important implication for balance training using controlled visual flow in patients with balance disorders and elderly.
Accelerometers have become extremely popular in the measurement of stride frequency as well as other related stride variables with current sensors capable of recording both accelerations and electromyography. The purpose of this preliminary investigation was to assess the estimation of stride frequency during running using a single tri-axial accelerometer compared to a commonly used infrared device the OptojumpTM system. Five healthy participants wore a Delsys Trigno tri-axial accelerometer attached to the right anterior shin and participants repeatedly ran at a submaximal pace through a four metre section of OptojumpTM. Stride frequency was calculated as stride time divided by one. For the OptojumpTM, stride time was the sum of contact and flight times from two consecutive steps. For the accelerometer, stride time was calculated as the time between two consecutive foot contacts on the right side. Foot contact was identified by local maxima in the Y (medial-lateral) acceleration trace. Estimates of stride frequency were compared using paired samples t- tests, intraclass correlation coefficients (ICCs) and Bland and Altman 95% limits of agreement (LOA) with significance set at p < 0.05. The mean difference between estimates was 0.01 Hz (95% LOA: -0.05-0.07 Hz) with single and average ICCs for stride frequency of 0.93 and 0.96 respectively. The results suggest that an accelerometer attached to the shin can accurately estimate stride frequency in running. Discrepancies in stride frequencies can be partially explained by differences in device sampling rates i.e. 137.15 Hz versus 1,000 Hz
Chronic ankle instability (CAI) patients show various sensorimotor deficits, which may be related to the chronic nature of instability. Ultimately, an intervention should focus on deficits which may perpetuate the problem, but an understanding of successful sensorimotor function may best come from those who sprained their ankles with no problematics outcome (copers). PURPOSE: To examine sagittal ankle angles, moments, tibialis anterior and medial gastrocnemius EMG activation during a single-leg maximal vertical side-cutting jump task. METHODS: 66 subjects (M=42, F=24; 22.2±2 yrs, 173.8±8 cm, 71.4±11 kg) consisted of 22 CAI (77.1±15.3% FAAM ADL, 62.5±20.4% FAAM Sports, 4.1±2.8 sprains), 22 Copers (100% FAAM ADL & Sports, 2.0±1.1 sprains), and 22 healthy controls. Subjects performed 10 jumps, consisting of a max vertical jump, landing on a force plate, and transitioning immediately to a side-cutting jump, while the dependent variables were collected during stance. Functional linear models (α=.05) were used to detect mean difference between groups. If functions and associated 95% confidence intervals did not cross the zero, then significant differences existed. RESULTS: Figure 1 shows that copers and AI exhibited up to 2.5° less dorsiflexion angle during 30-75% of stance, relative to controls. While copers exhibited similar neuromechanics to controls in sagittal ankle moment, tibialis anterior and medial gastrocnemius EMG activation, those with CAI demonstrated up to 0.5 Nm/kg less plantarflexion moment, 2.5% less tibialis anterior and 47% less medial gastrocnemius EMG activation. CONCLUSION: Copers show neuromechanics similar to healthy controls at times, and similar to those with CAI at others. Reduced plantarflexion moment and medial gastrocnemius EMG activation suggest that those with CAI may rely more on static stabilizers (e.g., bones) than dynamic stabilizers (e.g., muscles), which could increase impact loads on tibiotalar cartilage surface.
In the current study, we aimed to determine if differences in drop jump height or motor task execution strategy between young and middle-aged adults exist, when triceps surae MTU capacities (muscle strength and tendon stiffness) were matched.
The triceps surae MTU biomechanical properties of 29 middle-aged and 26 younger adults were assessed during isometric voluntary ankle plantarflexion contractions of the dominant leg using a custom-made dynamometer and ultrasonography simultaneously. The 12 young adults with the lowest triceps surae muscle strength and the 12 middle-aged adults with the greatest muscle strength then completed a series of drop jumps from different heights. Ground contact time, average vertical ground reaction force, average mechanical power and jumping height were recorded.
Younger and middle-aged adults attained comparable jumping heights independent of the drop jump height. There were significant age effects on ground contact time and average vertical ground reaction force during ground contact phase, with the middle-aged adults showing higher ground contact times but lower forces, leading to a significant age effect on mechanical power. Significant correlations were found between triceps surae MTU capacities and drop jump height.
The results of the current study demonstrate that when triceps surae MTU capacities are matched, young and middle-aged adults show comparable performance of a jumping task, despite having different motor strategies. Finally, the results suggest that neuromuscular factors other than maximum isometric strength and tendon stiffness may influence motor task execution strategy during jumping.
In the following project, we explored the relationships between age, vestibulopathy and stability control, in order to determine the age and vestibulopathy-related effects on stability control, and to establish if a relationship existed between static and dynamic stability task performance. The first study examined the response to repeated trip perturbations of healthy middle aged adults and vestibulopathy patients, the second examined feedforward adaptation of gait in young, middle aged and older adults to a sustained mechanical perturbation and the third examined the relationship between standing balance and recovery following a tripping perturbation in vestibulopathy patients. The results showed that vestibulopathy is related to a diminished ability to control and recover gait stability after an unexpected perturbation, and to a deficient reactive adaptation potential. With ageing, the ability to recalibrate locomotor commands to control stability is preserved, although this recalibration may be slower in old age compared to middle and young age. Given that a decline in vestibular function is seen with increasing age, we suggest that assessment of vestibular function may be necessary when investigating locomotor stability and falls risk in both research and clinical settings. Finally, despite static balance tasks and parameters being commonly used in clinical settings, we did not find a consistent relationship between static and dynamic stability task performance, indicating the importance of dynamic stability tests when assessing falls risk in clinical settings.
While normalization of gait is a primary goal of early rehabilitation, between limb asymmetries in knee extensor moment can persist 6-24 months later and previous literature assessing gait interventions is limited. The purpose of this study was to assess the influence of subject-specific cadence gait training program on knee loading mechanics following ACLr. Nine individuals completed an 8-week cadence training program (20min, 3x/week; Table1) and nine sex- and surgery-matched individuals served as controls. All eighteen participants received standard physical therapy and were tested at 1 and 3 months post-op. Kinematic and kinetic data were collected during walking at a self-selected speed. Repeated measures ANOVAs were used for comparisons; significance α≤0.05. Main effects of limb and time were observed: knee ROM (kROM;p<0.001;p=0.044;Fig.1) and knee extensor moment (kEXT;p=0.003;p=0.002) in the cadence and control groups, respectively. No main effects of group for kROM (p=0.136) or kEXT (p=0.229) were found. A trend toward a significant group x time x limb interaction was observed in kEXT (p=0.092), but not kROM (p=0.412). Post-hoc analyses of kEXT (Fig.2) revealed a significant time x limb interaction for the cadence group (p=0.053) but not the control group (p=0.884). In the cadence group, the time x limb interaction was driven by a 131% increase in kEXT in the surgical limb versus a 42% increase in the non-surgical limb between T1 and T2. Consistent with previous findings, these pilot data show promising results as the cadence intervention resulted in improvements in sagittal plane knee loading compared to controls.
As a treatment for end-stage elbow joint arthritis, total elbow replacement (TER) results in joint motions similar to the intact joint; however, bearing wear, excessive deformations and/or early fracture may necessitate early revision of failed implant components.
A finite element model of a TER assembly was developed based on measurements from a Coonrad-Morrey implant (Zimmer, Inc., Warsaw, IN) using nonlinear elasto-plastic UHMWPE material properties and a frictional penalty contact formulation. The loading scenario applied to the model includes a flexion-extension motion, a joint force reaction with variable magnitude and direction and a time varying varus-valgus (VV) moment with a maximum magnitude of 13 N.m, simulating a chair-rise scenario as an extreme loading condition. Model results were compared directly with corresponding experimental data. Experimental wear tests were performed on the abovementioned implants using a VIVO (AMTI, Watertown, MA) six degree-of-freedom (6-DOF) joint motion simulator apparatus. The worn TER bushings were scanned after the test using micro computed tomography (μCT) imaging techniques, and reconstructed as 3D models.
Contact pressure distributions on the humeral and ulnar bushings correlate with the sites of damage as represented by the μCT data and gross observation of clinical retrievals. The results demonstrate UHMWPE bushing damage due to different loading protocols. Numerical results demonstrate strong agreement with experimental data based on the location of deformation and creep on bushings and exhibit promising capabilities for predicting the damage and failure mechanisms of TER implants.