Virtual Poster Session

Welcome to the Virtual Poster Session, a new and powerful tool for networking and information exchange. Here you can share your work, search though the poster library, and start a dialogue with others in your field. Each uploaded poster that pertains to force measurement and testing can currently be used to apply for an academic travel scholarship; please see the Scholarships page for application details and deadlines.

Sort By: Most Recent | Most Popular View All
Submitted by Rebecca Nesbitt

Functional demands placed on the human knee’s anterior cruciate ligament (ACL) vary with activity but remain impossible to measure directly in-vivo. Our lab is characterizing these demands in the sheep model by recording in vivo knee kinematics and ACL transducer voltages during activities of daily living (ADLs), reproducing these motions using the instrumented limb, and measuring the 3D forces in the ligament. However, up to 13% of patients sustaining ACL injuries will also sustain dual medial meniscus (MM) injuries and up to 10% will sustain dual medial collateral ligament (MCL) injuries. These structures are frequently left unrepaired, which may alter the ACL’s functional demands, resulting in inadequate ACL reconstruction outcomes for patients with dual injuries. Although these structures have been shown to alter ACL loading in cadaveric studies, the extent to which they impact ACL functionality during in vivo ADLs remains unknown. Moreover, changes in ACL functionality over time due to joint healing and remodeling have yet to be investigated. In this study, we aimed to track stifle joint remodeling in response to surgically imposed MCL transections and medial meniscectomies through monitoring vertical ground reaction forces (VGRFs) for three ADLs over 12 weeks. Results of this study may then be used in conjunction with future robotic studies as a tool to estimate in vivo load requirements for ACL reconstructions in patients with dual injuries.


Submitted by Mohamed-Amine CHOUKOU

Assessing the lower limb properties in-situ is of a major interest for analyzing the athletic performance. From a physical point of view, the lower limb could be modeled as single linear spring which supports the whole body mass. The main mechanical parameter studied when using this spring-mass-model is the leg-spring stiffness (k). In laboratory conditions, the movements are assessed using a force plate (Meth1) which measures the ground reaction force (GRF), and a motion capture system which could estimate the displacement of the centre of mass (CoM). In this way, k is calculated as shown in equation (2).More recent methods allow to calculate k in field conditions by using either foot switches (Meth2) or accelerometry-based instruments (Meth3) which are both wireless devices. The associated calculated methods assume that force-time signal is a sine wave, described by the equation (3) with equation (4) (CT: contact time; FT: flight time). In these cases, the kinematic measurement (CoM) could be calculated either by a mathematical approach (Eq.(5)) (meth2), or by double integrating the acceleration (meth3) in order to calculate k.Thanks to their transportability, the methods 2 and 3 offer not only the possibility to assess the lower limb movements, but also, to objectively follow up the athletic abilities (performance, reactivity, force and power, stiffness) in-situ.


Submitted by Patrick Antonio

Introduction: Stair gait is an activity performed daily. Inherently falls during stair gait continue to be a concern especially for older adults 65 years +. Recently falls have become the most common cause of injury-related deaths in individuals over the age of 75 y.o. Stair descent falls account for 75% of stair falls and also present a greater injury severity. Poor shoes or insoles and lighting condition can contribute to an increased risk of falls during stair locomotion. Stability can be measured using the COM-BOS ‘stability margin’ relationship. Center of pressure (COP), another stability measure,can be calculated from a multi-axis force-plate system. As well, plantar pressure is an important indicator of gait pattern efficiency. Aim: To identify aspects of stair gait that increase the risk of falls. By measuring the COM-BOS ‘stability margin’, the COP and plantar pressure patterns of individuals during stair gait, while modifying insoles and lighting. Methods: Young and older adults will ascend and descend a 4 level staircase, with two imbedded AMTI-force platforms in varying lighting condition (low, normal). Participants will be fitted with standardized footwear with Medi-logic insoles placed under varying hardnesses of insoles. An Optotrak motion capture system will record 12 IRED markers placed on the individual to determine the COM trajectory and BOS of location. Hypothesis: Partipants should demonstrate a greater lateral displacement in the single support phase during dim lighting as opposed to normal lighting. The stability of older adults will be compromised with alteration to the insoles (soft and hard).


Listed In: Biomechanics, Gait, Other
Submitted by Daisuke Shibata

Dexterous manipulation relies on modulation of digit forces as a function of digit placement. However, little is known about the sense of position of the finger pads relative to each other. We quantified subjects' ability to match perceived vertical distance between the thumb and index finger pads (dy) of the right hand (“reference” hand, Rhand) using the ipsilateral or contralateral hand (“test” hand, Thand) without vision of the hands. The Rhand digits were passively placed non-collinearly (dy = ±30 mm) or collinearly (dy = 0 mm). Subjects reproduced Rhand dy by using a congruent or inverse Thand posture. We hypothesized that matching error would be greater (a) for collinear than non-collinear digits positions, (b) when Rhand and Thand postures were not congruent, and (c) when subjects reproduced dy using the contralateral hand. Subjects made greater errors when matching collinear than non-collinear dys, when the posture of Thand and Rhand were not congruent, and when Thand was the contralateral hand. Under-estimation errors were produced only for non-collinear digits positions, when the postures of Thand and Rhand were not congruent, and when Thand was the contralateral hand. These findings indicate that perceived finger pad distance is transferred across hands less accurately than when it is reproduced within the hand and reproduced less accurately when a higher-level processing of the somatosensory feedback is required for non-congruent hand postures. We propose that erroneous representation of finger pad distance, if not compensated for between contact and onset of manipulation, might lead to manipulation performance errors.


Listed In: Neuroscience
Submitted by Shrikant Swaminathan

In granulation processes, the mechanical properties of the powder being processed are very influential on the characteristics of the end product. For this reason the modified Drucker-Prager/Cap model parameters of Micro-crystalline cellulose (MCC), a commonly used pharmaceutical excipient was determined. In particular, the influence of particle size of MCC on the DPC parameters was studied. In this study three grades of MCC (MCC 101, MCC102 & MCC200) were studied. It was found that the compaction properties were insensitive the particle size of MCC.


Submitted by Deanna Kennedy

A large number of experiments have isolated a coalition of constraints, including cortical and subcortical neural crosstalk, that influence the coordination of the two hands functioning together. Recent findings, however, have demonstrated that these constraints are minimized when integrated feedback (Lissajous feedback) is used. Two experiments were designed to determine participants’ ability to coordinate 1:2 and 2:3 rhythmical bimanual force production tasks. We hypothesized that neural crosstalk should be more easily detected and characterized in tasks where the forces required to produce the goal pattern of coordination are increased. The task was to rhythmically produce and coordinate a pattern of isometric forces. A Lissajous display illustrated the specific pattern of force requirements needed to produce the goal pattern. The results indicated very effective temporal performance of the bimanual coordination patterns. This result is similar to that observed in our earlier work with reciprocal and circling motion, but is especially informative given that the increased forces required to produce the desired bimanual coordination pattern resulted in a consistent and identifiable distortion of the left limb forces that could be attributable to the production of right hand forces. We were not able to detect distortions of the forces produced by the right limb that could be attributable to the left limb. This type of right to left limb influence, which may be attributable to asymmetrical cortical and subcortical crosstalk, was not evident in our earlier work when the bimanual coordination tasks involved movements of the limbs in a relatively frictionless environment.


Listed In: Neuroscience
Submitted by Pranav Parikh

Transcranial anodal stimulation (tDCS) improves manual dexterity in healthy old adults. The underlying changes in finger force behavior for this improved dexterity have not been reported. Here, we investigated the effects of tDCS (20-min) over primary motor cortex (M1) combined with repeated practice on the Grooved pegboard test (tDCS+MP) on the fingertip forces applied to an object during grasp and manipulation. Eight right-handed able-bodied individuals (60-85 years) participated in a sham-controlled, single-blinded study. Each participant received anodal and sham intervention in two sessions at least 5-day apart. Before and after intervention, they performed a ‘key-slot’ task that required inserting a slot on an object onto a stationary bar, an isometric force production task using a pinch grip, and the Grooved pegboard test. Anodal relative to sham tDCS+MP allowed participants to better retain the improved performance on the pegboard test. For the isometric task, anodal tDCS+MP significantly increased the variability of force compared to sham tDCS+MP. More importantly, the improved retention of performance post-anodal tDCS correlated with the reduction in force angle variability on the key-slot task, but not with the change in force variability on the isometric task. Our findings suggest that anodal tDCS+MP facilitated retention of learning on a skillful manual task in healthy old adults, consistent with the role of M1 in retention of learning versus skill acquisition. Furthermore, improved force steadiness is one of the potential mechanisms through which short-term anodal tDCS during motor training yields improved performance on a functional task.


Submitted by Wenting gu

This poster presents a polymer-based microfluidic resistive sensor for detecting distributed loads. The sensor is comprised of a polymer rectangular microstructure with an embedded electrolyte-filled microchannel and an array of electrodes aligned along the microchannel length. Electrolyte solution in the microchannel serves as impedance transduction. Distributed loads acting on the polymer microstructure give rise to different deflection along the microstructure length, which is recorded as the resistance change in electrolyte solution. This sensor can detect distributed loads by monitoring the resistance change at each pair of electrodes. Owing to great simplicity of the device configuration, a standard polymer-based fabrication process is employed to fabricate this device. With custom-built electronic circuits and custom LabVIEW programs, fabricated devices filled with two different electrolytes, 0.1M NaCl electrolyte and 1-Ethyl-3-methylimidazolium dicyanamide electrolyte, are characterized, demonstrating the capability of detecting distributed static and dynamic loads with a single device.


Submitted by Jennifer Bent

Purpose: Total Hip Replacements (THR) are common procedures for older people who suffer from degenerative joint disease. Golf is a popular leisure sport played by older Americans including those with THR. Hip torques encountered in a golf swing after THR has not been reported. The purpose of this study is to describe 3D hip joint torques generated during a golf swinging by those with THR.
Methods: Three male amateur golfers who were at least 1 year post THR (ages 59-71 year old and right hand dominant, (2 were left THR) participated. Golf handicap ranged from 16-18. All participants completed the Hip Harris Score. Passive reflective markers were placed on key boney anatomical landmarks. During data collection, participants completed ten swings using a standardized driver, after a warm up. Kinetics and kinematics were captured using a 10 camera Motion Analysis system and two AMTI forceplates. Inverse dynamics procedure was used to calculate peak hip torques in all three planes. Hip torques were normalized and presented as internal torques. Comparisons were made to previously collected similarly aged senior group.
Results: Average Club head velocity was slower than senior group. Sagittal Plane: THR golfers exhibited the greatest torque similar to senior group. Frontal plane: THR golfers demonstrated a lower hip adductor torque on the lead leg compared to the trail leg and senior group. Transverse plane: THR exhibited higher hip external rotation torques compared to the internal rotation torques and the senior group.
Conclusion: 3-D peak hip torques generated during the golf swing by persons with a THR are greatest in the sagittal plane. THR golfers demonstrated slower club head speed but generated higher hip torques in the transverse plane as compared to those without a THR. Hip external rotation torque was higher in all of the THR compared to the senior group.
Clinical Significance: Subjects with a THR may be prone to abnormal forces in the transverse plane during the golf swing. Future studies are needed to determine impact on return to golf decisions following a THR.


Submitted by Dan Su

The Federal Rail Association (FRA) mandated an increase in freight railcar weight limits from 1170 kN (263,000 lb) to 1272 kN (286,000 lb). However, most of the railway bridges were built prior to World War II and are not designed to handle this increased railcar weight. Thus, there is a need for accurate and efficient methods to evaluate and load rate existing bridges that will reveal their actual capacities.
In this study, the research approach adopted is aimed at providing an efficient method to load rate railway bridges. Three load rating methods were utilized and compared: (1) traditional method based on American Railway Engineering and Maintenance-of-Way Association (AREMA) specifications, (2) refined traditional method using data from field tests, and (3) load rating using testing data and finite element (FE) modeling. Various types of bridges were field tested and evaluated. Results from a typical railway bridge will be used to demonstrate and compare each one of the three load rating methods. For this bridge, non-destructive testing was performed. The collected responses were used to improve the traditional method and calibrate a 3-D FE model. The rating results indicated that method (1) can be relatively conservative and does not reflect the actual behavior of the structure while method (3) provided accurate results it was more tedious. It is suggested that the refined traditional method (2) be used since it provided similar accurate rating results without developing a detailed FE model.