Virtual Poster Session

Welcome to the Virtual Poster Session, a new and powerful tool for networking and information exchange. Here you can share your work, search though the poster library, and start a dialogue with others in your field. Each uploaded poster that pertains to force measurement and testing can currently be used to apply for an academic travel scholarship; please see the Scholarships page for application details and deadlines.

Sort By: Most Recent | Most Popular View All
Name: gtierne

Rugby is intrinsically an impact sport which results in concussions being a frequent injury within the game. Repeated concussion is linked to early-onset dementia and depression, and the rules for limiting repeated concussion are an ongoing controversy. Therefore a greater understanding of the dynamics of head impacts in rugby and the mechanism of concussion is required. Accordingly, this study focuses on assessing the use of Model Based Image Matching (MBIM) and multi-camera view video for measuring six degree of freedom head kinematics during an impact event in rugby union. The matching is performed on video evidence using 3-D animation software Poser 4. The surroundings are built in the virtual environment based on the real dimensions of the sport field. A skeleton model is then used to fit the player’s anthropometry for each video frame thus allowing player kinematics to be measured. The results from this initial study suggest that the MBIM method can be applied to head impact cases in rugby union. The head kinematics results from this case are similar to those reported in literature. The MBIM method should be applied to a number of head impact cases to establish thresholds for concussion injuries in rugby. The data gained from the MBIM method can allow for more reliable kinematic data to be inputted into finite element analysis and rigid body simulations of concussion impacts. This can allow multi-axis force measurements to be measured within the brain and neck. This can ultimately lead to an improvement in concussion injury prevention and management.


Name: jastein

Mechanography during the vertical jump test allows for evaluation of force-time variables reflecting jump execution, which may enhance screening for functional deficits that reduce physical performance and determining mechanistic causes underlying performance changes. However, utility of jump mechanography for evaluation is limited by scant test-retest reliability data of force-time variables. Purpose: To examine test-retest reliability of jump execution variables assessed from mechanography using two different protocols. Methods: 32 women (mean ± SD: age = 20.8 ± 1.3 yr, height = 167.6 ± 6.3 cm, mass = 68.2 ± 12.7 kg) and 16 men (age = 22.1 ± 1.9 yr, height = 181.5 ± 5.0 cm, mass = 94.1 ± 24.6 kg) attended a familiarization session followed by two testing sessions, all one week apart, during which they performed the vertical jump test and had mechanography data recorded. Participants performed six squat jumps (SJ) per session, with squat depth self-selected for the first three jumps and controlled using a goniometer to 110º knee flexion for the remaining three jumps. Raw data were sampled at 1,000 Hz and filtered with a cutoff frequency of 90.9 Hz using Bertec Digital AcquireTM. Jump execution variables were calculated using a macro program in Microsoft Visual Basic. Eight force-time variables were assessed. Test-retest reliability was quantified as the systematic error (using %difference between jumps), random error (using coefficients of variation), and test-retest correlations (using intraclass correlation coefficients).Results: Jump execution variables demonstrated good reliability, evidenced by very small systematic errors (mean ±95%CI: –1.2 ±2.3%), small random errors (mean ±95%CI: 17.8 ±3.7%), and very strong test-retest correlations (range: 0.73-0.97). Differences in random errors between controlled and self-selected protocols were negligible (mean ±95%CI: 1.3 ±2.3%). Conclusion: Jump execution variables demonstrated good reliability, with no meaningful differences between the controlled and self-selected SJ depth protocols. To simplify testing, a self-selected SJ depth protocol can be used to assess force-time variables with negligible impact on measurement error


Listed In: Biomechanics
Name: bryappie

Footwear plays a significant role in, and can influence children’s gait. Footwear type is especially important as a child grows and develops from a novice to an expert walker. Compared to barefoot walking, children generally have increased spatiotemporal (ST) gait parameters while walking with footwear. Gait variability has also shown to be affected by footwear. The degree of stiffness in footwear could have a large influence on children’s gait and variability. This study investigated effects of footwear stiffness on ST gait parameters and gait variability in novice walkers. Children with an average age of 33.3 ( 7.0) months participated in a single data collection. Heel and toe marker positions were acquired for one minute of walking per condition. Participants walked on the treadmill in three levels of footwear stiffness (rigid: hard-soled stiff shoe, semi-rigid: EVA sole athletic shoe, compliant: moccasin soft-sole shoe) and barefoot. ST gait parameters and gait variability were calculated for each condition using marker. and treadmill forces. ST parameters all increased in the rigid and semi-rigid footwear conditions compared to soft-sole and barefoot. Interestingly, there were no differences between barefoot and wearing a moccasin for any of the ST variables. There were no differences in SD and COV between any of the footwear conditions. The moccasin shoe promotes walking most similar to normal barefoot walking. Standard measures of variability failed to detect differences between footwear conditions. Further investigation into different measurements is necessary to parse out what effect footwear has on children’s gait variability.


Listed In: Biomechanics, Gait
Name: mtitch

Purpose:
Anterior cruciate ligament (ACL) tear greatly increases the risk of knee osteoarthritis (OA), even when patients undergo ACL reconstruction surgery (ACLR). Changes to walking kinematics following ACLR have been suggested to play a role in this degenerative path to post-traumatic OA by shifting the location of repetitive joint contact loads that occur during walking to regions of cartilage not conditioned for altered loads. Recent work has shown that changes to the average knee center of rotation during walking (KCOR) between 2 and 4 years after ACLR are associated with long term changes in patient reported outcomes at 8 years. Changes to KCOR result in changes to contact patterns between the femur and the tibial plateau. However, it is unknown if changes to this kinematic measure are reflected by changes to cartilage as early as 2 years after surgery. Ultrashort TE-enhanced T2* (UTE-T2*) mapping has been shown to be sensitive to subsurface changes occurring in deep articular cartilage early after ACL injury and over 2 years after ACLR that were not detectable by standard morphological MRI. Thus, the purpose of this study was to test the hypothesis that side to side differences in KCOR correlate with side to side differences in UTE-T2* quantitative MRI (qMRI) in the central weight bearing regions of the medial and lateral tibial plateaus at 2 years following ACLR.

Methods:
Thirty-five human participants (18F, Age: 33.8±10.5 yrs, BMI: 24.1±3.3) with a history of unilateral ACL reconstruction (2.19±0.22 yrs post-surgery) and no other history of serious lower limb injury received bilateral examinations on a 3T MRI scanner. UTE-T2* maps were calculated via mono-exponential fitting on a series of T2*-weighted MR images acquired at eight TEs (32μs -16 ms, non-uniform echo spacing) using a radial out 3D cones acquisition. All subjects completed bilateral gait analysis. Medial-lateral (ML) and anterior-posterior (AP) coordinates of average KCOR during stance of walking were calculated for both knees. Side to side differences in KCOR were tested for correlations with side to side differences in mean full thickness UTE-T2* quantitative values in the central weight bearing regions of the medial and lateral tibial plateau using Pearson correlation coefficients.

Results:
There was a distribution in UTE-T2* values, with some subjects having higher UTE-T2* and some lower in the ACLR knee relative to the contralateral knee. A significant correlation (R=0.407, p=0.015, Figure 1A) was observed between UTE-T2* and the ML KCOR with a more lateral KCOR corresponding to higher values of UTE-T2* for the medial tibia. Similarly, for the lateral tibia, a lower UTE-T2* was correlated with a more posterior KCOR (R=0.363, p=0.032, Figure 1B). Significant correlations were not observed for UTE-T2* in the lateral tibia with the ML position of KCOR or for UTE-T2* in the medial tibia with the AP position of KCOR.

Conclusions:
The results of this study support the hypothesis that side to side differences in mean full thickness UTE-T2* qMRI correlate with side to side differences in knee kinematics at 2 years after ACLR. The finding that a more lateral KCOR in the ACLR knee correlates with UTE T2* values in the medial tibia that were higher than the contralateral side suggests that this kinematic change, which has been previously shown to result in more relative motion between the femur and tibia in the medial compartment, could be affecting subsurface matrix integrity, inducing changes detectable by UTE-T2* mapping. Additionally, the finding that a more posterior KCOR in the ACLR knee correlated with UTE-T2* values in the lateral tibia that were lower than the contralateral knee further suggests that the UTE-T2* metric may reflect early changes in cartilage health. When interpreted within the context of prior work showing that a posterior shift in KCOR from 2 to 4 years post-surgery correlated with improved clinical outcomes at 8 years, the observed lower UTE-T2* with a more posterior KCOR, which is reflective of improved quadriceps recruitment, suggests positive cartilage matrix properties. In spite of the limitations of this cross-sectional and exploratory study, and the difficulty accounting for changes in the contralateral knee, these results support future studies of the relationship between UTE-T2* and KCOR to provide new insight into predicting the risk for OA after ACLR.


Name: sunkukwon

Chronic ankle instability (CAI) patients often exhibit altered walking mechanics, due to strength and proprioceptive deficits associated with CAI. Reduced strength and proprioception function may alter walking energetic patterns, by reducing energy absorption and generation capability. It is unclear whether strength and proprioceptive training can affect walking energetics for CAI patients. PURPOSE: To examine the effect of a 6-week ankle and hip rehab program on ankle, knee, and hip joint energetic patterns during walking in CAI patients. METHODS: 15 CAI patients (23 ± 2 yrs, 178 ± 8 cm, 76 ± 9 kg, 83 ± 7% FAAM ADL, 56 ± 10% FAAM Sports, 3.6 ± 1.1 MAII, 4.7 ± 2.0 ankle sprains) performed ankle and hip strength and proprioceptive exercises (i.e., theraband, wobble board, etc.) 3 times per week, for 6 weeks (rehab group). 14 CAI patients (22 ± 2 yrs, 177 ± 9 cm, 75 ± 12 kg, 81 ± 9% FAAM ADL, 56 ± 12% FAAM Sports, 3.4 ± 1.2 MAII, 5.9 ± 3.3 sprains) performed no rehab exercises (control group). We measured ankle, knee, and hip joint power during walking for all patients before and after 6 week duration. Functional statistics (α = 0.05) were used to evaluate the influence of the rehab exercises on joint power for both groups across the entire stance phase of walking. RESULTS: The rehab intervention resulted in up to 0.07 W/kg more positive ankle power (concentric) between 19 and 26% of stance and up to 0.06 W/kg more positive knee power (concentric) between 40 and 48% of stance. No changes were detected in hip joint power during the stance phase of walking. CONCLUSION: Strength and proprioceptive training resulted in an improved gait energetic efficiency via increased ankle and knee power generation during mid-stance. As greater muscular strength can lead to an increase in power absorption and generation, the intervention focusing on strength could be beneficial in improving walking energetics in a CAI population.


Listed In: Biomechanics, Gait
Name: mgbrowne

Even prior to walking slower, older adults walk with a diminished push-off – decreased propulsive forces (FP) accompanied by reduced ankle moment and power generation. The purpose of this study was to identify age-related differences in the joint-level modifications used to modulate FP generation during walking. We posit that there are two possibilities for older adults to enhance FP generation. First, older adults may increase ankle power generation and thereby alleviate compensatory demands at the hip. Alternatively, older adults may opt to exacerbate their distal to proximal redistribution by relying even more on the hip musculature.
10 healthy young adults and 16 healthy older adults participated in this study. Subjects walked at their preferred speed while watching a video monitor displaying their instantaneous FP while instructed to modify their FP to match target values representing normal and ±10% and ±20% of normal. For all trials, we estimated lower extremity joint kinematics and kinetics.
During normal walking, older adults exerted smaller FP and ankle power than young adults. Enhancing FP via biofeedback alleviated mechanical power demands at the hip, without changes in ankle power. Further, older adults walked with increased FP without increasing their total positive joint work. Thus, given the same total requisite power generation, older adults got ‘more bang for their ankle power buck’ using biofeedback.


Name: robin.healy

Accelerometers have become extremely popular in the measurement of stride frequency as well as other related stride variables with current sensors capable of recording both accelerations and electromyography. The purpose of this preliminary investigation was to assess the estimation of stride frequency during running using a single tri-axial accelerometer compared to a commonly used infrared device the OptojumpTM system. Five healthy participants wore a Delsys Trigno tri-axial accelerometer attached to the right anterior shin and participants repeatedly ran at a submaximal pace through a four metre section of OptojumpTM. Stride frequency was calculated as stride time divided by one. For the OptojumpTM, stride time was the sum of contact and flight times from two consecutive steps. For the accelerometer, stride time was calculated as the time between two consecutive foot contacts on the right side. Foot contact was identified by local maxima in the Y (medial-lateral) acceleration trace. Estimates of stride frequency were compared using paired samples t- tests, intraclass correlation coefficients (ICCs) and Bland and Altman 95% limits of agreement (LOA) with significance set at p < 0.05. The mean difference between estimates was 0.01 Hz (95% LOA: -0.05-0.07 Hz) with single and average ICCs for stride frequency of 0.93 and 0.96 respectively. The results suggest that an accelerometer attached to the shin can accurately estimate stride frequency in running. Discrepancies in stride frequencies can be partially explained by differences in device sampling rates i.e. 137.15 Hz versus 1,000 Hz


Name: lizbell@terpmai...

Objectives: The conventional push-up is a popular exercise used by the American College of Sports Medicine to test participant muscular endurance. Push-ups require changes in the ground reaction forces generated at each point of contact with the ground (all four extremities) which are achieved through muscular contractions. Although this exercise is common, the motor control mechanisms used in this motion are relatively unknown. We investigated whether humans adjust individual limb forces (push-up synergies) as they reached volitional fatigue and evaluated the hypothesis that muscular fatigue influences synergistic actions between the forces produced at the hand contact points. Approach: Twenty-one volunteers participated in a single motion capture trial where they performed as many push-ups as possible, stopping at self-determined failure. Push-ups were completed to a controlled three-beat rhythm (down, up, hold plank) at a rate of 24 repetitions per minute. Participants were instructed to arrange themselves in a plank position with each extremity within the bounds of an embedded force platform and analog data was collected at a frequency of 1000Hz. An index of synergy, defined as correlations between vertical forces, was calculated for every downward and upward motion within the push-up trial. Findings: Between-arm vertical forces were positively correlated during upward and downward motion. Positive correlation indicates that limbs worked together to produce increases or decreases needed for center of mass movement. Upward limb synergy significantly (p ≤ 0.00) decreased as participants neared volitional fatigue while downward limb synergy did not significantly change (p = 0.77). Conclusions: We found that muscular fatigue affected the synergistic actions between limbs in upward motion but not in downward motion. After muscular fatigue, between arm synergy was reduced only during concentric muscle contractions. Public Health Significance: Better understanding the synergistic changes produced by fatigue could be used to evaluate or better understand control changes behind pathologic gait or movement adaptations.


Name: stahl22

Purpose: To validate an instrumented figure skating blade that is designed to measure impact forces while skating. Methods: Seven subjects (Age: 21.3±2.8 yrs, Ht: 166.9±2.5 cm, Mass: 64.7±7.9 kg) performed 20 landings each onto artificial ice while landing on the instrumented blade from heights of 17.5cm, 25cm, and 33cm. A custom instrumented blade calibrated to measure in forces in Newtons (N) was used to measure impact forces (1000Hz) during landings. These forces were compared to forces obtained while subjects landed on AMTI force plates located underneath the artificial ice surface. Boot angle (250Hz) and force plate data (1000Hz) were collected using Vicon Nexus. Custom LabVIEW programs were used to determine peak force, loading rate, impulse, and the correlation between the blade force data and the force plate data. Paired T-tests were used to compare peak force, loading rate, and impulse between the blade and force plate data. Alpha = 0.05. Results: Correlations between the blade force data and force plate data were good to excellent: mean r (±SD) = .86 ± 0.08. No significant differences were found for peak force and impulse between the blade and force plate data. Peak force means (±SD) were 1353.7 ± 352.2 N for the blade and 1361.2 ± 309.7 N for the force plate (p=.86). Conclusion: The custom instrumented blade is a valid tool for measuring peak forces and impulse during landings. Current research is focused on increasing the gain of the instrumented blade to improve loading rate accuracy.


Listed In: Biomechanics
Name: cbutowicz

The purpose of this study was to determine differences in core stability between collegiate football players with and without non-traumatic shoulder pain. 20 collegiate football players completed tests of trunk control and muscle capacity. Control was assessed via an unstable chair placed on a force plate. Static control was assessed by center of pressure movement during seated balance using 95% confidence ellipse area (CEA; mm2) and mean velocity (MVEL; mm/s). Dynamic control was assessed during a speed and accuracy target acquisition task. Directional control (DC; mm; COP path to target) and precision control (movement around target prior to acquisition (PC; CEA mm2)) were measured. Capacity was assessed by trunk flexor (FLEX; s) and extensor endurance (EXT; s) and double-leg lowering (DLL; °). MANOVA (Eta) and t-tests (Cohen’s d) assessed group differences (p < 0.05) Core stability was not significantly different between groups. Data presented as mean ± stdev (No Pain/Pain), p-value, effect size: Static control- CEA 183 ± 129/ 131 ± 85 and MVEL 5.7 ± 3.0/6.4 ± 2.6, p = 0.38, Eta =.33; Dynamic Control- DC 49± 9/46 ± 6, p = 0.49, d =.39 and PC 143 ± 72/93± 25, p = 0.051, d = 0.93; Capacity: FLEX 77 ± 38/99 ± 32, EXT 74 ± 22/69± 28, p = 0.22, Eta= .40 and DLLT 14 ± 10/15 ± 11, p = 0.92, d =.05. Our data do not provide evidence of diminished core stability in football players with shoulder pain.