Virtual Poster Session

Welcome to the Virtual Poster Session, a new and powerful tool for networking and information exchange. Here you can share your work, search though the poster library, and start a dialogue with others in your field. Each uploaded poster that pertains to force measurement and testing can currently be used to apply for an academic travel scholarship; please see the Scholarships page for application details and deadlines.

Sort By: Most Recent | Most Popular View All
Name: Valentina

Our previous study showed that exposure to Galvanic Vestibular Stimulation (GVS) induces temporary postural deficits similar to the ones experienced by astronauts after microgravity exposure. Preliminary evidence suggests that repeated exposures to GVS might induce adaptation of sway response. We studied whether repeated exposure to pseudorandom GVS over a 3 month period facilitates the adaptation response. Twenty healthy subjects were randomly assigned into 2 groups: suprathreshold (5mA) GVS, and subthreshold (1mA). The test battery included: Romberg, sensory organization test (posturography), dynamic visual acuity, and torsional eye movement. Each test was performed with no GVS, and then with 10 min of GVS per session for 12 consecutive weeks. Sensorimotor adaptation was also measured during two follow up sessions at weeks 18 and 36. Results showed that subthreshold GVS did not affect vestibular scores. Suprathreshold GVS significantly decreased vestibular scores during the first few weeks, with postural performance returning to baseline around the 6th week of exposure. This improvement was maintained during the follow up sessions. Our results suggest that 60 min of subthreshold GVS are sufficient to elicit adaptation to the stimulus. No significant changes were shown in low-level vestibulo-ocular reflexes during torsional eye movement, or vestibulo-spinal reflexes during Romberg; confirming that adaptation only occurs at the level of the CNS. NASA NCC 9-58; NNX09AL14G


Name: chrismccrum

Patients with unilateral peripheral vestibular disorder (UPVD) have diminished postural stability and therefore the aim of this study was to examine the contribution of multiple sensory systems to postural control in UPVD. Seventeen adults with UPVD and 17 healthy controls participated in this study. Centre of pressure (COP) trajectories were assessed using a force plate during six standing tasks: Forwards and backwards leaning, and standing with and without Achilles tendon vibration, each with eyes open and eyes closed. Postural stability was evaluated over 30s by means of: total COP excursion distance (COPPath) and the distances between the most anterior and posterior points of the COPPath and the anterior and posterior anatomical boundaries of the base of support (COPAmin and COPPmin). In addition, the corrected COPAmin and COPPmin was assessed by taking the corrected base of support boundaries into account using the anterior and posterior COP data from the leaning tasks. UPVD patients showed a tendency for smaller limits of stability during the leaning tasks in both directions. Subject group and task condition effects were found (P<0.05) for COPPath, (i.e. higher values for patients compared to controls). UPVD patients showed lower (P<0.05) COPPmin values compared to the control group for all conditions (more pronounced with the corrected COPPmin). Disturbance of the visual system alone lead to a distinct postural backward sway in both subject groups which became significantly more pronounced in combination with Achilles tendon vibration. The individual limits of stability should be considered in future research when conducting posturographic measurements.


Name: machtn83

Assessing the lower limb properties in-situ is of a major interest for analyzing the athletic performance. From a physical point of view, the lower limb could be modeled as single linear spring which supports the whole body mass. The main mechanical parameter studied when using this spring-mass-model is the leg-spring stiffness (k). In laboratory conditions, the movements are assessed using a force plate (Meth1) which measures the ground reaction force (GRF), and a motion capture system which could estimate the displacement of the centre of mass (CoM). In this way, k is calculated as shown in equation (2).More recent methods allow to calculate k in field conditions by using either foot switches (Meth2) or accelerometry-based instruments (Meth3) which are both wireless devices. The associated calculated methods assume that force-time signal is a sine wave, described by the equation (3) with equation (4) (CT: contact time; FT: flight time). In these cases, the kinematic measurement (CoM) could be calculated either by a mathematical approach (Eq.(5)) (meth2), or by double integrating the acceleration (meth3) in order to calculate k.Thanks to their transportability, the methods 2 and 3 offer not only the possibility to assess the lower limb movements, but also, to objectively follow up the athletic abilities (performance, reactivity, force and power, stiffness) in-situ.


Name: pienciak

We investigated whether stability affects the learning and/or transfer of human postural control strategies. Subjects learned novel postural control strategies in a more stable standing configuration and then transferred to a less stable configuration, or vice versa. Initial learning was not affected by stability. However, transfer of learned control from one context to another was affected by the change in stability between contexts. These results suggest that in rehabilitation it is important to consider the context in which task learning occurs, as well as the context in which the task will be performed in the future.


Name: kyomotom

We investigated the production of free radicals on a poly(ether-ether-ketone) (PEEK) substrate under ultraviolet (UV) irradiation. The amount of the ketyl radicals produced from the benzophenone (BP) units in the PEEK molecular structure initially increased rapidly and then became almost constant. Our observations revealed that the BP units in PEEK acted as photoinitiators, and that it was possible to use them to control the graft polymerization of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC). This “self-initiated surface graft polymerization” method is very convenient in the absence of external photoinitiator. We also investigated the effects of the monomer concentration and UV irradiation time on the extent of the grafted PMPC layer. Furthermore, as an application to improving the durability of artificial hips, we demonstrated the nanometer-scale photoinduced grafting of PMPC onto PEEK and carbon fiber-reinforced PEEK (CFR-PEEK) orthopedic bearing surfaces and interfaces. A variety of test revealed significant improvements in the water wettability, frictional properties, and wear resistance of the surfaces and interfaces.


Name: chenwen

Tai Ji is one of the recommended non-pharmacologic treatments for knee osteoarthritis (OA), but it is not clear if all Tai Ji movements would be suitable and beneficial for knee OA patients. PURPOSE: To examine knee biomechanical characteristics of the selected knee unfriendly Tai Ji movement elements performed in high-pose position compared to slow walking. METHODS: Seventeen healthy participants (age: 23.9 ± 2.7 years, height: 1.73 ± 0.08 m, body mass: 69.0 ± 13.0 kg) performed three trials in each of the following five test conditions: level walking at 0.8 m/s and four identified knee unfriendly Tai Ji movement elements: lunge, pushdown and kick performed in high-pose position (35 ± 5°) and pseudo-step. Simultaneous collection of 3D kinematics (120 Hz) and ground reaction forces (1200 Hz) was conducted. A one-way ANOVA was performed with post hoc paired samples t-tests to determine differences of the high-pose lunge, pushdown, and kick, and pseudo-step and walking. RESULTS: Knee flexion range of motion for high-pose lunge (29.5°), pushdown (24.3°) and kick (11.1°) was lower than pseudo-step (45.0°, p<0.001 for all comparisons) and walking (47.8°, p<0.001 for all comparisons). Peak knee extensor moment was lower in high-pose lunge (1.04 Nm/kg), pushdown (1.01 Nm/kg) and kick (0.48 Nm/kg) than pseudo-step (1.46 Nm/kg, p<0.001 for all comparisons), but higher than walking (0.38 Nm/kg, p<0.001 for all comparisons) except for kick. Peak knee abduction moment was higher in pseudo-step (-0.61 Nm/kg) than high-pose pushdown (-0.43 Nm/kg), kick (-0.44 Nm/kg), and walking (-0.45 Nm/kg, for all comparisons p<0.001). CONCLUSION: These findings demonstrate higher peak knee extensor moment in most of the Tai Ji knee unfriendly movement elements compared to slow walking. It is recommended that Tai Ji participants with knee OA and other knee pathological conditions modify knee unfriendly movement elements (e.g. lunge) and reduce the size of their movements to minimize knee joint loading. The Tai Ji movement elements including pushdown and pseudo-step should be avoided in the Tai Ji exercises designed for knee OA patients.


Listed In: Biomechanics
Name: rakshatha

Multisensory integration is driven by a process of sensory reweighting during which each input is assigned a weight depending on the current functional state of a particular sensory system, the task itself and the context in which it is being performed. The primary aim of this study was to determine which of the two inputs between ankle proprioception and vision is upweighed during a postural control task when the two inputs provide conflicting information pertaining to direction of body sway. Achilles tendon vibration and visual flow were used to create sensory conflict, which produced center of pressure (COP) sway in opposite directions when applied independently. The baseline conditions (1) consisted of eyes open quiet stance condition, eyes closed with vibration applied on the Achilles tendons (2) and eyes open with visual flow (3). The experimental condition simultaneously combined vibration and visual flow. COP excursions were recorded in 10 healthy young adults to evaluate the magnitude and direction of sway produced by vibration and/or visual flow. Additionally, lower body joint kinematics were evaluated to understand the multi-segmental strategies and their adaptation to the various sensory manipulations. The results showed that visual flow moderated the extent of backward COP and ankle angular displacement produced when vibration was applied independently. Additionally, visual flow was also found to reduce the extent of predominant hip strategy generated by ankle vibration. The findings show that visual input plays a significant role in maintaining stability and that ankle proprioception is downweighed during conflicts between vision and proprioception. This has important implication for balance training using controlled visual flow in patients with balance disorders and elderly.


Name: troyrand

Healthy standing posture is characterized by the ability to interact with a changing environment while maintaining upright stance. Being adaptable to changing environments affords flexibility and allows the system to encounter novel environments without losing control of posture. The purpose of this research was to determine if stroke survivors could adapt to support surface translations with differing temporal structures.

Methods: Eight stroke survivors participated in this research. Participants stood on a force platform on the Neurocom Balance Manager (Neurocom Intl., Clackamas, OR, USA). The support surface was translated in the anteroposterior direction according to waveforms with different temporal structures, this included white noise, pink noise, brown noise, and a sine wave. They also performed a normal standing trial where the platform did not move. Root mean square and detrended fluctuation analysis of the center of pressure signal were calculated to determine amount and temporal structure of variability respectively.

Results: During normal standing the stroke survivors’ posture exhibited lack of adaptability. The stroke survivors had increased amount of variability in all conditions compared to normal standing, regardless of the inherent structure of the support surface translations. The temporal structure of variability indicated weakened long-range correlations in all conditions compared to normal standing. This indicates that regardless of the temporal structure of the support surface movement the amount of movement increased while the structure of movement became more random.

Previous work has demonstrated that healthy posture is able to adapt to the temporal structure of support surface translations, this adaptability was not seen in a population of stroke survivors. This lack of adaptability makes interactions with environmental perturbations difficult and impacts functionality. Focusing rehabilitation protocols towards regaining healthy temporal structures in postural control could improve functionality in chronic stroke survivors.


Name: wkorgan

Following amputation, an amputee must learn to walk again using a prosthesis. A goal of prosthetic rehabilitation is to reduce and eliminate asymmetries between the prosthetic leg and sound leg which may decrease the negative effects of long term force and work demands on the sound leg. An amputee-specific physical therapy program provides structured motor learning to aid in developing proper gait mechanics. However, physical therapy is not standard of care for all individuals receiving their first prosthesis due to limited evidence showing improved gait. Thus, the purpose of this study was to determine whether amputees receiving physical therapy have better gait mechanics than those that do not. It was hypothesized that those who underwent an amputee-specific physical therapy program would display a more symmetrical gait pattern. Transtibial amputees walked overground at self-selected pace while kinetic (600Hz) and kinematic (60Hz) data were collected. The therapy group had previously received 2-3 therapy sessions per week for 3 months. Asymmetries were determined through dependent t-tests (α=0.05) comparing sound leg and prosthetic leg kinetic variables. Of the 23 kinetic variables tested, 17 variables showed significant difference between the sound leg and prosthetic leg for the group that did not receive the amputee-specific physical therapy. For the group that had previously received the therapy, only 4 variables showed differences between the sound and prosthetic leg. Thus, we showed that individuals partaking in amputee-specific physical therapy have a more symmetrical gait which results on less force and energy demands on the sound leg.


Name: alexandros.chri...

Victims of improvised explosive devices (IEDs) that have presented spinal injury in recent conflicts have been shown to have a high incidence of lumbar spine fractures. Previous studies have shown that the initial positioning of spinal bone-disc-bone complexes affects their biomechanical response when loaded quasi-statically; such a correlation, however, has not been explored at appropriate high loading rate scenarios that simulate injury. This study aims to investigate the response of lumbar spine cadaveric segments in different postures under axial impact conditions. Three T11-L1 bi-segments were dissected and tested destructively in a drop tower under flexed/neutral/extended postures. Strains were measured on the vertebral body and the spinous process of T12. Forces were measured cranially using a 6-axis load cell, and a high-speed camera was used to capture displacements and fracture. The impacted specimens were CT-scanned to identify the fracture pattern. Whilst axial force to failure was similar for flexed and extended postures, the non-axial forces and the bending moments, however, were dissimilar between postures. Although all specimens showed a burst fracture pattern, the extended posture failed more posteriorly. This suggests that axial force alone is not adequate to predict injury severity in the lumbar spine. This insight would not have been possible without the use of the 6-axis load cell. As metrics for spinal injury in surrogates take into account only the axial force, this programme of work may provide data for a better injury criterion and allow for a mechanistic understanding of the effects of posture on injury risk.