Virtual Poster Session

Welcome to the Virtual Poster Session, a new and powerful tool for networking and information exchange. Here you can share your work, search though the poster library, and start a dialogue with others in your field. Each uploaded poster that pertains to force measurement and testing can currently be used to apply for an academic travel scholarship; please see the Scholarships page for application details and deadlines.

Sort By: Most Recent | Most Popular View All
Name: nlaw098

Tai Chi (TC) has the rehabilitative potential to prevent falls in the elderly, however it is unclear how TC training improves postural control capacity. Fifteen male participants with more than 4 years of TC experience were asked to perform two TC movements, the “Repulse Monkey (RM)” and “Wave-hands in clouds (WHIC).” Three-dimensional (3-D) temporospatial, kinematic and kinetic data was collected using VICON motion analysis system with 10 infrared cameras and 4 force plates. Stride width, step length, step width, single- and double-support times, center of mass (COM) displacement, peak joint angles, range of motion, peak joint moments, time to peak moment, and ground reaction force (GRF) were analyzed. The differences in the measurements of the two TC movements were compared with walking using two-way ANOVA analysis. Compared with walking kinematics, both TC movements spent less time in single-support; RM and WHIC had larger mediolateral and vertical displacement of the COM. Compared with walking kinetics, both TC movements generated significantly smaller peak ground reaction forces in all directions, except the anterior; larger hip extension, adduction and internal rotational moments, knee adduction/abduction and internal rotation moments and eversion/inversion and external/internal moments of ankle–foot; and longer peak moment generation time for hip extension, adduction and internal rotation, knee extension and ankle dorsiflexion and inversion. The slow, gentle stepping-action and loading patterns that are consistent with the mechanical behavior of biological tissues. These two TC movements would be suitable training to help strengthen the lower extremities and prevent falls in the elderly.

Name: DKingston

When performing high knee flexion movements (>120º), thigh-calf (TC) and heel-gluteal (HG) structures come into contact and transmit force between segments. Previous work has only assessed the effect of these forces on net external knee joint forces and moments in the sagittal plane. Therefore, the purpose of this study was to quantify the effect of incorporating the 3D location and orientation of TC and HG force vectors on external forces and moments acting on the knee. Sixteen participants (8 M/F) completed five repetitions of six high-flexion movements. Kinematics, kinetics, and pressure distribution (of TC and HG contact) were measured from the right lower limb. Inverse dynamics were calculated with and without TC and HG force, to determine the change in magnitude. During high knee flexion movements, there was a significant reduction in AP forces (~50%) and F/E moments (~27%) as a result of considering contact between lower limb segments. Novel to this study was the ability to account for the 3D force vector and CoF location of TC and HG by tracking the motion of the pressure mat allowing the effect on frontal plane moments to be determined. There was a significant increase in the Ab/Ad moment (~60% in two movements) which is a known risk factor for knee osteoarthritis development. These results will improve the biofidelity of future high flexion musculoskeletal models of the knee. Future work is required to determine if findings from this young and healthy population translates to occupational or individuals that habitually kneel.

Listed In: Biomechanics
Name: lschroe1

Lateral ankle sprains, caused by rapid ankle inversion, and noncontact anterior cruciate ligament (ACL) knee injuries, caused by excessive knee loading, are among the most common lower extremity injuries that occur during dynamic tasks, such as cutting. Ankle braces are commonly used to prevent lateral ankle sprains by reducing ankle inversion. There is limited and conflicting research about how an ankle brace affects other joints, such as the knee, during cutting movements. It is also not known if sex differences exist during a cutting task when an ankle brace is present. The purpose of this study was to determine the effects of an Ultra Zoom® hinged ankle brace and sex on ankle and knee biomechancis during a cutting maneuver. Eighteen recreationally active adults completed sidestep cutting trials with and without an Ultra Zoom® ankle brace. Three-dimensional ankle and knee kinematics and GRF were collected. Separate 2×2 (sex × brace) repeated measures ANOVAs were used. Results indicated the brace reduced frontal plane ankle kinematics and had no effect on knee kinematics. Additionally, females demonstrated decreased knee flexion compared to males. An ankle brace during a cutting maneuver restricted frontal plane ankle movement. Furthermore, the only significant changes in knee mechanics were due to sex differences, which has been well documented. These findings indicate that the use of an Ultra Zoom® hinge brace is suitable for sports, reduces the risk of lateral ankle injuries, and does not alter knee mechanics, and therefore may not increase the risk of ACL injury.

Name: speel

Research has shown decreases in dorsiflexion ROM appear to be predictors for non-contact ACL injuries during landing tasks. The gastrocnemius-soleus complex (GSC) plays a critical role in dorsiflexion ROM, with a less compliant GSC decreasing dorsiflexion ROM. However, it is unknown whether acute GSC stretching can decrease ACL loading during landing tasks. Fifteen active participants completed three trials of single-leg drop-landings from a box. 3D-lower extremity kinematics and kinetics were captured using 3D-motion capture system and force plate. Between assessments, all participants completed a three-minute bout of stretching targeting the GSC. Musculoskeletal modeling was used to estimate ACL loading in the sagittal, frontal, and transverse planes, overall peak ACL loading, and time to peak ACL loading. Pretest and posttest ACL loading variables were compared with paired t-tests (p≤0.05). No significant differences were found between pre-stretch and post-stretch peak ACL loading time, peak frontal plane ACL loading, and peak transverse plane ACL loading (p>0.05). However, post-stretch peak sagittal plane ACL loading was significantly higher compared to pre-stretch peak sagittal plane ACL loading (p=0.008). Furthermore, overall post-stretch peak ACL loading was significantly higher compared to overall pre-stretch peak ACL loading (p=0.022). As the gastrocnemius plays a role in knee flexion, it is possible that an acute bout of stretching may increase gastrocnemius compliance, therefore increase in sagittal plane ACL loading. An increase in sagittal plane loading would also lead to an overall loading effect on the ACL. Future studies warrant investigation into the effects of chronic GSC stretching on ACL loading.