Virtual Poster Session

Welcome to the Virtual Poster Session, a new and powerful tool for networking and information exchange. Here you can share your work, search though the poster library, and start a dialogue with others in your field. Each uploaded poster that pertains to force measurement and testing can currently be used to apply for an academic travel scholarship; please see the Scholarships page for application details and deadlines.

Sort By: Most Recent | Most Popular View All
Name: bengadomski

The inherent reduction in mechanical loading associated with microgravity has been shown to result in dramatic decreases in the bone mineral density (BMD) and mechanical strength of skeletal tissue. Importantly, there is a concomitant increase in fracture risk during long-duration spaceflight missions. Thus, the objective of this study was to investigate the effects of microgravity loading on long-bone fracture healing in a previously-developed Haversian bone model of simulated microgravity over a 4-week period. For in vivo mechanical evaluation, strains of an implanted orthopaedic fixation plate were quantified for known hindlimb ground reaction forces with a six degree-of-freedom load cell (AMTI, Watertown, MA). In vivo strain measurements demonstrated significantly higher orthopaedic plate strains in the Microgravity Group as compared to the Control Group following the 28-day healing period due to inhibited healing in the microgravity environment. DEXA BMD in the treated metatarsus of the Microgravity Group decreased 17.6% at the time of the ostectomy surgery and decreased an additional 5.4% during the 28-day healing period. Four-point bending stiffness of the Microgravity Group was 4.4 times lower than that of the Control Group (p<0.01), while µCT and histomorphometry demonstrated reduced periosteal callus area, mineralizing surface, mineral apposition rate (p<0.001), bone formation rate, and periosteal/endosteal osteoblast numbers as well as increased periosteal osteoclast number. These data provide strong evidence that the mechanical loading environment dramatically affects the fracture healing cascade and resultant mineralized tissue strength, and that the microgravity loading environment has negative effects on fracture healing in Haversian systems.

Name: lsosdian

Background: Gait abnormalities can influence surgical outcomes in people with severe knee osteoarthritis (OA) and thus a thorough understanding of gait abnormalities in these people prior to arthroplasty is important. Varus-valgus thrust is a characteristic linked to OA disease progression that has not yet been investigated in a cohort with severe knee OA awaiting knee arthroplasty. The aims of this study were to determine i) prevalence of varus and valgus thrust in a cohort with severe knee OA compared to an asymptomatic group, ii) whether the thrust magnitude differed between these groups iii) differences between varus and valgus thrusters within the OA cohort and iv) whether certain measures could predict thrust in the OA cohort.

Methods: 40 patients with severe knee OA scheduled for primary TKR and 40 asymptomatic participants were recruited. Three-dimensional gait analysis was performed on all participants, with the primary biomechanical measures of interest being: varus and valgus thrust, knee adduction angle, peak KAM, and KAM impulse. Additionally, static knee alignment and quadriceps strength were assessed in the subgroup with knee OA.

Findings: No difference was found in the prevalence of varus and valgus thrust between the severe OA and control groups (Pearson chi-square = 3.735, p value = 0.151). The OA varus thrust group had a significantly higher peak KAM (p=0.000), KAM impulse (p=0.001), static alignment (p=0.021), and lower quadriceps strength (p=0.041) than the valgus thrust group. Peak KAM and quadriceps strength were found to explain 34.9% of the variation in maximum thrust, such that an increase in KAM and a decrease in quadriceps strength were associated with an increase in maximum (varus) thrust.

Interpretation: Few differences between the severe OA and control groups were seen, however dichotomizing the groups into varus and valgus cohorts revealed a number of biomechanical differences. Patients with severe OA are often treated as a homogenous cohort; however, by classifying which individuals have a varus or valgus thrust, we have identified a subset of patients with poorer biomechanics who could potentially be at a higher risk of a worse outcome after surgery.

Name: hpedmk

A large number of experiments have isolated a coalition of constraints, including cortical and subcortical neural crosstalk, that influence the coordination of the two hands functioning together. Recent findings, however, have demonstrated that these constraints are minimized when integrated feedback (Lissajous feedback) is used. Two experiments were designed to determine participants’ ability to coordinate 1:2 and 2:3 rhythmical bimanual force production tasks. We hypothesized that neural crosstalk should be more easily detected and characterized in tasks where the forces required to produce the goal pattern of coordination are increased. The task was to rhythmically produce and coordinate a pattern of isometric forces. A Lissajous display illustrated the specific pattern of force requirements needed to produce the goal pattern. The results indicated very effective temporal performance of the bimanual coordination patterns. This result is similar to that observed in our earlier work with reciprocal and circling motion, but is especially informative given that the increased forces required to produce the desired bimanual coordination pattern resulted in a consistent and identifiable distortion of the left limb forces that could be attributable to the production of right hand forces. We were not able to detect distortions of the forces produced by the right limb that could be attributable to the left limb. This type of right to left limb influence, which may be attributable to asymmetrical cortical and subcortical crosstalk, was not evident in our earlier work when the bimanual coordination tasks involved movements of the limbs in a relatively frictionless environment.

Listed In: Neuroscience
Name: afalaki

Over the past years, we have developed a test for postural stability based on the theory of synergies stabilizing salient performance variables. In this study, effects of Parkinson's disease (PD) and dopamine-replacement therapy on multi-muscle synergies stabilizing the center of pressure (COP) coordinate were explored between: (1) a cohort of 11 patients without clinically identifiable postural problems (Hoehn-Yahr stage II) and 11 age-matched controls, and (2) a cohort of 10 patients tested off- and on-medication, with and without postural problems (stage II and III, n = 5 per stage). Participants stood on a force platform and performed cyclical body sway at 0.5 Hz along the anterior-posterior direction. Electromyographic signals from 13 leg and trunk muscles were used to compute: (1) the amount of inter-cycle variance that did not affect (VUCM) and affected (VORT) COP coordinate, and (2) the magnitude of the cycle-to-cycle motion that did not change (motor equivalent: ME) and changed (non-motor equivalent: nME) the COP coordinate. We hypothesized that both methods would produce indices sensitive to PD and dopaminergic medications. Compared to controls, patients showed significantly smaller inter-cycle VUCM and ME components suggesting a less flexible, and hence less stable, behavior. Moreover, inter-cycle variance within/orthogonal to the UCM correlated with ME/nME displacements. Results suggest clinical utility of variance and motor equivalence analyses of postural instability in early stages of PD and quantifying the effects of dopamine-replacement drugs. The analysis of motor equivalence is particularly attractive because it requires only a handful of trials (observations).

Listed In: Neuroscience
Name: dshibata

Dexterous manipulation relies on modulation of digit forces as a function of digit placement. However, little is known about the sense of position of the finger pads relative to each other. We quantified subjects' ability to match perceived vertical distance between the thumb and index finger pads (dy) of the right hand (“reference” hand, Rhand) using the ipsilateral or contralateral hand (“test” hand, Thand) without vision of the hands. The Rhand digits were passively placed non-collinearly (dy = ±30 mm) or collinearly (dy = 0 mm). Subjects reproduced Rhand dy by using a congruent or inverse Thand posture. We hypothesized that matching error would be greater (a) for collinear than non-collinear digits positions, (b) when Rhand and Thand postures were not congruent, and (c) when subjects reproduced dy using the contralateral hand. Subjects made greater errors when matching collinear than non-collinear dys, when the posture of Thand and Rhand were not congruent, and when Thand was the contralateral hand. Under-estimation errors were produced only for non-collinear digits positions, when the postures of Thand and Rhand were not congruent, and when Thand was the contralateral hand. These findings indicate that perceived finger pad distance is transferred across hands less accurately than when it is reproduced within the hand and reproduced less accurately when a higher-level processing of the somatosensory feedback is required for non-congruent hand postures. We propose that erroneous representation of finger pad distance, if not compensated for between contact and onset of manipulation, might lead to manipulation performance errors.

Listed In: Neuroscience
Name: hsianglt

A high incidence of lower extremity injuries has been reported in runners, with half of the injuries occurring at the knee joint. Sagittal plane trunk posture was shown to influence hip and knee kinetics during landing. This suggests trunk posture may be a risk factor of running injuries. The purpose of this study was aimed to examine the influence of sagittal plane trunk posture on hip and knee kinetics during running. Forty runners were recruited. Three-dimensional kinematics (250Hz, Qualisys) and ground reaction force data (1500Hz, AMTI) were collected while subjects ran with a self-selected trunk posture (speed: 3.4m/s). Mean trunk flexion angle and peak hip and knee extensor moments during the stance phase were calculated. Subjects were dichotomized into High-Flex and Low-Flex groups based on trunk flexion angles. On average, the two groups demonstrate 7.4°difference in trunk flexion. Independent t-tests showed that the Low-Flex group demonstrated significantly higher knee extensor moments and lower hip extensor moments compared to the High-Flex group. Pearson correlations showed that trunk flexion angle was positively correlated with peak hip extensor moment (r=0.44) and inversely correlated with peak knee extensor moment (r=-0.51). The results suggested a small difference in trunk flexion angle has significant influences on hip and knee kinetics. Individuals who run with a more upright trunk posture may be predisposed to a higher risk of patellar tendinopathy and patellofemoral pain. Incorporating a forward lean trunk may be utilized as an intervention strategy to reduce knee loading and risk of knee injuries in runners.

Name: hmculbertson

This work introduces the Penn Haptic Texture Toolkit (HaTT), a publicly available repository of haptic texture models for use by the research community. HaTT includes 100 haptic texture and friction models, the recorded data from which the models were made, images of the textures, and the code and methods necessary to render these textures using an impedance-type haptic interface such as a SensAble Phantom Omni. This work reviews our previously developed methods for modeling haptic virtual textures, describes our technique for modeling Coulomb friction between a tooltip and a surface, discusses the adaptation of our rendering methods for display using an impedance-type haptic device, and provides an overview of the information included in the toolkit. Each texture and friction model was based on a ten-second recording of the force, speed, and high-frequency acceleration experienced by a handheld tool moved by an experimenter against the surface in a natural manner. We modeled each texture’s recorded acceleration signal as a piecewise autoregressive (AR) process and stored the individual AR models in a Delaunay triangulation as a function of the force and speed used when recording the data. Measurements of the user’s instantaneous normal force and tangential speed are used to synthesize texture vibrations in real time. These vibrations are transformed into a texture force vector that is added to the friction and normal force vectors for display to the user.

Name: blakin

During osteoarthritis (OA), the lubricity of synovial fluid (SF) decreases. Therefore, we synthesized a novel, 2MDa polymer biolubricant (“2M TEG”) designed to augment the lubricating properties of SF in OA. This study’s aims were 1) to compare the abilities of 2M TEG and bovine synovial fluid (BSF) to reduce the coefficient of friction (COF) for previously “worn” cartilage specimens during a long-duration, torsional, wear test, and 2) using the same regimen, examine the “reversibility” of 2M TEG’s lubricity relative to BSF. For both aims, each wear test consisted of subjecting mated, bovine osteochondral plug pairs to 10,080 rotations. To accomplish Aim 1, plug pairs were subjected to three sequential wear regimens (Wear 1-3). Wear 1&2 were used to progressively “wear” the cartilage, and Wear 3 was used to test the efficacy of either BSF (n=4) or 2M TEG (n=4) on “worn” cartilage. For Aim 2, three pairs were subjected to four sequential wear regimens, where the lubricants were BSF, BSF, 2M TEG, and BSF, respectively. The relative percent reduction in COF between Wear 3 and Wear 2 in Aim 1 was greatest for 2M TEG, followed by BSF. For Aim 2, the mean percent reduction in COF for Wear 3 relative to Wear 2 was almost exactly the same as the mean increase in COF for Wear 4 relative to Wear 3. By reducing the COF for worn cartilage in OA joints, synthetic biolubricants such as 2M TEG could help minimize further cartilage wear and ameliorate the progression of OA.

Name: zlerner

Altered gait biomechanics associated with pediatric obesity may increase the risk of musculoskeletal injury/pathology during physical activity and/or diminish a child’s ability to engage in sufficient physical activity. The biomechanical mechanisms responsible for the altered gait in obese children are not well understood, particularly as they relate to increases in adipose tissue. The purpose of this study was to investigate the role of adiposity (i.e. body fat percentage, BF%) on lower extremity kinematics, muscle force requirements and their individual contributions to the acceleration of the center of mass (COM) during walking. We scaled a musculoskeletal model to the anthropometrics of each participant (n=14, 8-12 years old, BF%: 16-41%) and generated dynamic simulations of walking to predict muscle forces and their contributions to the acceleration of the COM. Muscle force output was normalized to muscle mass. BF% was correlated with average knee flexion angle during stance (r=−0.54) and pelvic obliquity range of motion (r=0.78), as well as with relative vasti (r=−0.60), gluteus medius (r=0.65) and soleus (r=0.59) force production. Contributions to COM acceleration from the vasti were negatively correlated to BF% (vertical: r=−0.75, posterior: r=−0.68, respectively), but there was no correlation between BF% and COM accelerations produced by the gluteus medius. The functional demands and relative force requirements of the hip abductors during walking in pediatric obesity may contribute to altered gait kinematics. Our results provide insight into the muscle force requirements during walking in pediatric obesity that may be used to improve the quality/quantity of locomotor activity in this population.

Name: NikitaKuznetsov

Fractal time series analysis methods are commonly used for analyzing center of pressure (COP) signals with the goal of revealing the underlying neuromuscular processes for upright stance control. The use of fractal methods is often coupled with the assumption that the COP is an instance of fractional Gaussian noise (fGn) or fractional Brownian motion (fBm). Our purpose was to evaluate the applicability of the fGn-fBm framework to the COP in light of several characteristics of COP signals revealed by a new method, adaptive fractal analysis (AFA; Riley et al., 2012). Our results showed that there are potentially three fractal scaling regions in the COP as opposed to one as expected from a pure fGn or fBm process. The scaling region at the fastest scale was anti-persistent and spanned ~30-90 msec, the intermediate was persistent and spanned ~200 msec-1.9 sec, and the slowest was anti-persistent and spanned ~5-40 sec. The intermediate fractal scaling region was the most clearly defined, but it only contributed around 11% of the total spectral energy of the COP signal, indicating that other features of the COP signal contribute more importantly to the overall dynamics. Also, more than half of the Hurst exponents estimated for the intermediate region were greater than the theoretically expected range [0,1] for fGn-fBm processes. These results suggest the fGn-fBm framework is not appropriate for modeling COP signals. ON-OFF intermittency might provide a better modeling framework for the COP, and multiscale approaches may be more appropriate for analyzing COP data.