Association of isometric hip and ankle strength with frontal plane kinetics in females during running
Conference: Annual Meeting of the American College of Sports Medicine, Minneapolis, MN, 2018
Abstract: Frontal plane mechanics have been associated with running-related injuries such as patellofemoral pain. Strengthening and gait retraining programs aimed at reducing hip adduction during running have been shown to be effective at alleviating symptoms, however evidence of their effect on running kinematics is equivocal. It is possible that such programs exert their benefits through altering kinetics rather than kinematics in the frontal plane during running. Further, the contributions of the ankle to frontal plane mechanics have not been well studied. PURPOSE: To determine if hip and ankle strength are associated with frontal plane kinetics in female runners. METHODS: 64 healthy women running at least 16km per week participated in this study. Isometric hip abduction and ankle inversion strength were measured using a handheld dynamometer. 3D gait analysis was conducted as participants ran on an instrumented treadmill at 2.7 m/s. Participants were ranked in order of isometric strength of both the hip and ankle, and divided into tertiles of high, medium and low strength. 2-way MANOVA was used to determine the relationship between strength and peak moment, positive work and negative work in the frontal plane of the hip and the ankle. Tukey post-hoc tests were conducted where applicable (α=0.05). RESULTS: There was no significant interaction effect, or main effect of hip strength. There was a significant main effect of ankle strength on frontal plane kinetics (p=0.024). Specifically, the strong ankle group compared to the weak ankle group had significantly greater magnitude of peak ankle inversion moment (0.95(0.32) vs 0.68(0.22) Nm/kg, p=0.033), hip abduction moment (-2.78(1.02) vs -1.88(0.24) Nm/kg, p=0.002) and hip frontal plane positive work (0.27(0.19) vs. 0.13(0.03) W/kg, p=0.006). CONCLUSION: Isometric ankle but not hip strength is associated with kinetics in the frontal plane during running in females. Thus ankle strength should not be overlooked in clinical evaluation and treatment of runners.
Listed In: Biomechanics, Gait, Physical Therapy, Sports Science,
Tagged In: ankle strength, hip strength, joint kinetics, Running Biomechanics
View PDF | Contact Author
Abstract: Frontal plane mechanics have been associated with running-related injuries such as patellofemoral pain. Strengthening and gait retraining programs aimed at reducing hip adduction during running have been shown to be effective at alleviating symptoms, however evidence of their effect on running kinematics is equivocal. It is possible that such programs exert their benefits through altering kinetics rather than kinematics in the frontal plane during running. Further, the contributions of the ankle to frontal plane mechanics have not been well studied. PURPOSE: To determine if hip and ankle strength are associated with frontal plane kinetics in female runners. METHODS: 64 healthy women running at least 16km per week participated in this study. Isometric hip abduction and ankle inversion strength were measured using a handheld dynamometer. 3D gait analysis was conducted as participants ran on an instrumented treadmill at 2.7 m/s. Participants were ranked in order of isometric strength of both the hip and ankle, and divided into tertiles of high, medium and low strength. 2-way MANOVA was used to determine the relationship between strength and peak moment, positive work and negative work in the frontal plane of the hip and the ankle. Tukey post-hoc tests were conducted where applicable (α=0.05). RESULTS: There was no significant interaction effect, or main effect of hip strength. There was a significant main effect of ankle strength on frontal plane kinetics (p=0.024). Specifically, the strong ankle group compared to the weak ankle group had significantly greater magnitude of peak ankle inversion moment (0.95(0.32) vs 0.68(0.22) Nm/kg, p=0.033), hip abduction moment (-2.78(1.02) vs -1.88(0.24) Nm/kg, p=0.002) and hip frontal plane positive work (0.27(0.19) vs. 0.13(0.03) W/kg, p=0.006). CONCLUSION: Isometric ankle but not hip strength is associated with kinetics in the frontal plane during running in females. Thus ankle strength should not be overlooked in clinical evaluation and treatment of runners.
Listed In: Biomechanics, Gait, Physical Therapy, Sports Science,
Tagged In: ankle strength, hip strength, joint kinetics, Running Biomechanics
View PDF | Contact Author