standing stability

Standing steadiness and variability of older adults on a step ladder

MOTIVATION: Ladder fall injury rates are highest among older adults. While standing stability has been quantified using center of pressure (COP) to classify general fall risk of older adults, it has not been applied to older adults’ balance and performance on ladders. This study investigates the standing stability of older adults while performing a task on a ladder. METHODS: One-hundred four older adults completed the Physiological Profile Assessment (PPA) to classify fall risk and climbed to the second step of a household step ladder to change a light bulb. Force plates under the step ladder were used to calculate the COP. COP parameters were extracted to assess stability on the step ladder including path length (time-normalized), RMS and elliptical area. Task time and COP parameters were compared between 10 participants with the highest fall risk and 10 participants with the lowest fall risk based on the PPA. RESULTS: Task time was 8.4 seconds (63.9%) longer for the high fall risk group. Time-normalized path lengths were similar between the two groups. The high fall risk group showed an increase in RMS by 18.1% and elliptical area by 44.6%. CONCLUSIONS: Differences in tasks time, RMS and elliptical area were observed between low and high fall risk groups. Larger RMS values and elliptical area indicate more movement away from the average COP location. This suggests high fall risk older adults to be more variable than low fall risk older adults in their standing stability when completing a task on a step ladder.
Listed In: Biomechanical Engineering, Biomechanics, Posturography