propulsion

The Functional Utilization of Propulsive Capacity During Human Walking

The age-associated decline in propulsive push off power generated during walking plays a central role in the reduction of mobility and independence in older adults. Previous work suggests that this population retains an underutilized propulsive reserve during normal walking that dynamometry assessments fail to effectively assess. This is especially notable when assessing plantarflexor mechanical output, which often yield implausible (i.e., ≥100%) values of ‘functional capacity utilized (FCU)’, most frequently defined as the ratio of the peak ankle moment during the push-off phase of walking to that during a maximum isometric voluntary contraction. Therefore, the extent to which we utilize our propulsive capacity, how utilization changes as we age, and the factors that govern utilization and maximum propulsive capacity remain unclear. Utilizing a feedback controlled, motor driven horizontal impeding force system and a novel maximum force condition which systematically increases applied force, we can find a participant’s maximum propulsive capacity. During this condition, we find that younger adults retain a reserve of 48% in terms of ground reaction force, 22% in terms of ankle moment and 43% in terms of ankle power, which may not be effectively predicted using dynamometry assessments. As an important first step, we present data showing that a more functional task, walking with horizontal impeding forces, could potentially more effectively assess propulsive reserves in younger adults.
Listed In: Biomechanics