Motion capture

Musculoskeletal Modeling as a Tool for Biomechanical Analysis of Normal and Pathological Gait

In this work, a 3D lower limb musculoskeletal model and simulation of multiple sclerosis disease is presented. The Model was developed using the Musculoskeletal Modeling Software (MSMS), MSMS has the advantage that the model can be exported directly to Simulink allowing us to generate Functional Electrical Stimulation (FES) and evaluate different injuries. From the simulations, is possible to obtain the joint range of motion, joint torque, muscle-tendon length, force and moment arm, this is important not only to perform biomechanical analysis but also to design exoskeleton robots for rehabilitation and to generate reference trajectories for control purposes. In order to validate the results, a study case of a normal and pathological gait is presented, then, the results are compared with the literature and with real data obtained from a low cost, and a professional gait capture system.
Listed In: Biomechanical Engineering, Biomechanics, Gait


A preliminary study on quality of knee strength measurements by means of Hand Held Dynamometer and Optoelectronic System

Strength measurements are popular in the clinical practice to evaluate the health status of patients and quantify the outcome of training programs. Currently a common method to measure strength is based on Hand Held Dynamometers (HHD) which is operator-dependent. Some studies were conducted on repeatability of strength measurements but they were limited to the statistical analysis of repeated measurements of force. In this work, the authors developed a methodology to study the quality of knee flexion/extension strength measurements by measuring the effective HHD position and orientation with respect to the patient. HHD positioning attitude was measured by means of an Optoelectronic System for which a marker protocol was defined ad-hoc. The approach allowed to assess quality of measurements and operator’s ability by means of quantitative indices. The protocol permitted the evaluation of: angles of HHD application, angular range of motion of the knee and range of motion of the HHD. RMSE parameters allowed to quantify the inaccuracy associated to the selected indices. Results showed that the operator was not able to keep the subject’s limb completely still. The force exerted by the subject was higher in knee extension and the knee range of motion was higher than expected, however the operator had more difficulties in holding the HHD in knee flexion trials. This work showed that HHD positioning should be as accurate as possible, as it plays an important role for the strength evaluation. Moreover, the operator should be properly trained and should be strong enough to counteract the force of the subject.
Listed In: Biomechanical Engineering, Biomechanics, Physical Therapy, Sports Science