Lateral ankle sprain

Hinged ankle braces do not alter knee mechanics during sidestep cutting

Lateral ankle sprains, caused by rapid ankle inversion, and noncontact anterior cruciate ligament (ACL) knee injuries, caused by excessive knee loading, are among the most common lower extremity injuries that occur during dynamic tasks, such as cutting. Ankle braces are commonly used to prevent lateral ankle sprains by reducing ankle inversion. There is limited and conflicting research about how an ankle brace affects other joints, such as the knee, during cutting movements. It is also not known if sex differences exist during a cutting task when an ankle brace is present. The purpose of this study was to determine the effects of an Ultra Zoom® hinged ankle brace and sex on ankle and knee biomechancis during a cutting maneuver. Eighteen recreationally active adults completed sidestep cutting trials with and without an Ultra Zoom® ankle brace. Three-dimensional ankle and knee kinematics and GRF were collected. Separate 2×2 (sex × brace) repeated measures ANOVAs were used. Results indicated the brace reduced frontal plane ankle kinematics and had no effect on knee kinematics. Additionally, females demonstrated decreased knee flexion compared to males. An ankle brace during a cutting maneuver restricted frontal plane ankle movement. Furthermore, the only significant changes in knee mechanics were due to sex differences, which has been well documented. These findings indicate that the use of an Ultra Zoom® hinge brace is suitable for sports, reduces the risk of lateral ankle injuries, and does not alter knee mechanics, and therefore may not increase the risk of ACL injury.
Listed In: Biomechanics, Sports Science


Acute Effects of Lateral Ankle Sprains on Range of Motion, Single Limb Balance, and Self-Reported Function

One in three individuals who suffer a lateral ankle sprain (LAS) subsequently develop chronic ankle instability. However, our inability to properly treat acute LAS is not surprising given our limited understanding of post-LAS consequences. 12 patients (21.6±2.9yrs; 172.9±13.1cm; 79.1±21.4kg) with an acute LAS participated. All participants were evaluated for dorsiflexion range of motion (DFROM), time-to-boundary (TTB) in single limb balance (SLB), and self-reported function (SRF) at 1-week, 2-weeks, 4-weeks, 6-weeks, and 8-weeks post injury. Both the involved and uninvolved limbs were measured during the patients first test session. DFROM was assessed using the weight-bearing lunge test and all participants performed 3, 10s of single limb stance with eyes open on a force plate to measure their single limb balance. SRF was measured using the Foot and Ankle Ability Measure (FAAM) and FAAM-Sport (FAAM-S). Post injury time points were compared to a control condition using multivariate ANOVAs (α=0.05). Relative to the control condition, FAAM and FAAM-S were significantly lower at 1-week and 2-weeks post injury. The FAAM-S was also significantly lower score compare to control condition at 4-weeks post-injury. Both FAAM and FAAM-S were not significant different at 6-weeks post-injury. Post-injury TTB measures and DFROM were not significantly different from the control condition. Non-significant declines in DFROM and TTB were observed as in this sample of acute LAS and appear to present with unique recovery patterns. Different recovery patterns among the tested outcomes indicate the need for further research with a larger cohort and for a longer post-injury duration.


Listed In: Biomechanics, Physical Therapy, Posturography, Sports Science