Gait biomechanics after total hip arthroplasty: using statistical parametric mapping to identify differences between various surgical approaches

Biomechanical studies have tried to assess the impact of the surgical approach on gait characteristics and recovery after total hip arthroplasty (THA). Some studies which used discrete analyses have shown that some surgical approaches provide better hip joint function after one year post-surgery, but several studies did not find any differences. The goal of this study was to compare hip biomechanics during gait using statistical parametric mapping (SPM) in patients who underwent THA with either a lateral (LAT), anterior (ANT), or posterior (POS) approach. Forty-five patients underwent unilateral THA with either a LAT, ANT, or approach, and were compared with 15 healthy controls (CTRL). All patients underwent biomechanical gait analysis approximately 9 months following surgery. Hip biomechanics were compared between groups throughout the entire gait cycle using a One-Way ANOVA SPM. Alpha was set to 0.05 and Bonferroni post hoc comparisons were completed. The POS group had a significantly lower hip flexion moment just prior to toe-off compared to the ANT and CTRL groups. The ANT group had significantly lower hip abduction moment for most of the stance phase compared to the LAT and CTRL groups. The POS group had a significantly lower hip abduction moment compared to the LAT and CTRL groups. These findings tend to contradict existing literature. Future studies should complete both pre- and post-operative assessments with a larger cohort in each group, as well as standardize the implants as much as possible to determine if observed differences are due to the approach and no other factors.
Listed In: Biomechanics, Orthopedic Research


Eccentric training may affect the longitudinal adaptation of the muscle. Usually the muscle fiber lengthening during eccentric training is measured by the joint kinematics. Due to tendon compliance, this method offers insufficient information about the muscle fiber behavior. The present study investigated the muscle fiber behavior of the Vastus Lateralis muscle (VL) during eccentric knee contractions in humans by measuring the changes of fascicle length in vivo with ultrasonography, at force levels of 65% and 95% of the maximum voluntary isometric contraction force (MVC). Seven young adults were tested by a Biodex. They performed eccentric knee contractions with one leg at 65% and 95% of their MVC (knee angle 25°-100°, angular velocity 90°/s). Potential joint axis deviations were recorded using a Vicon camera system. Exerted knee moments were captured synchronously with the Vicon system at 1000Hz. Fascicle length of the VL muscle visualized by a 10cm Ultrasound prob. The means and standard deviations of fascicle elongation at 65% and 95% of the MVC were 42.71±8.54mm and 39.11±10.64mm respectively, with no statistically significant difference between both conditions. All subjects showed a plateau or slide decrease in fascicle length at the beginning of the movement. This slight decrease in fascicle length, which occurs despite a lengthening of the VL muscle-tendon unite, can be explained by the tendon compliance. The similar fascicle elongation between the two conditions (65% vs. 95% MVC) reveals that the amplitude of the force level during eccentric knee extension contractions does not affect the lengthening of the fascicle.

Listed In: Biomechanics, Other