Sports Science

Effects of Transcutaneous Electrical Nerve Stimulation on Gait Kinetics in Individuals with Experimentally Induced Knee Joint Pain

Background: Knee joint pain (KJP) independently alters motor function and gait mechanics, and these alterations may accelerate chronic knee joint disease. While TENS restores motor function deficits, it is unclear whether TENS restores compensatory gait mechanics. The purpose was to examine the effects of KJP on lower-extremity joint moments, and the effects of TENS on the aforementioned variables. We hypothesized that KJP will result in altered gait patterns, and TENS will help restore these mechanical alterations. Methods: We randomly selected 15 subjects for the TENS group, after which subjects were matched for the placebo group. Subjects underwent 3 sessions (hypertonic, isotonic, control). A 20-gauge flexible catheter was inserted into the right infrapatellar fat pad, and an infusion pump infused a saline of 0.154 mL•min¯¹ for 50 min (total = 7.7 mL). A TENS protocol was set at a biphasic mode with 120 µs and 180 Hz for 20 min. To blind placebo treatment, subjects in the placebo group was told that an electrical stimulation had been set to sub-sensory level. High-speed video (240 Hz) and an instrumented treadmill (1200 Hz) were used for gait analysis. Functional analysis of variance were used to evaluate differences between groups over time for joint moments. The mean curve with 95% CIs is represented by polynomial functions, showing us the entire stance, rather than identifying discrete peak points. If 95% CIs did not cross zero, significant difference existed (P < 0.05). Discussion: KJP independently increase internal knee varus moments, which were consistent with previous finding using patients with osteoarthritic knee pain. These compensatory gait patterns may be a result of a pain-avoidance motor deficits strategies. Since observed patterns can create altered mechanical and biological stress patterns on articular surface, it may increase the risk of degenerative knee disease. However, attempting to reduce perceived pain and increase neuron activation through TENS can help overcome deficits in knee and hip joint moments.
Listed In: Biomechanics, Gait, Sports Science


Comparison of accelerometry stride time calculation methods

The purpose of this study was to investigate how a newly proposed method of stride time calculation, utilising data filtered at 2 Hz, compared to previous methods. Tibial accelerometry data for 6 participants completing half marathon running training were collected. One run was selected for each participant at random, from which five consecutive running strides were ascertained. Four calculation methods were employed to derive each stride time and results were compared. No significant difference was found between methods (p=1.00). The absolute difference in stride time, when comparing the proposed method to previous methods, ranged from 0.000 seconds to 0.039 seconds. Filtered data could offer a simplified technique for stride time output during running gait analysis, particularly when applied during automated data processing for large data sets.
Listed In: Biomechanics, Gait, Sports Science


Marathon Stride Rate Dynamics: A Case Study

The purpose of this study was to investigate stride rate (SR) dynamics of a recreational runner participating in his debut marathon. Tibial accelerometry data obtained during a half marathon (R1) and marathon (R2) were utilised. SR data were extracted utilising novel computational methods and descriptive statistics were utilised for analysis of R2, and comparison of the first half of the marathon (R2half) to R1. Results indicate that the participant employed comparable SR strategy in R1 and R2half. For R2 a combined decreasing trend in SR and increased variance in SR from 30 km (R2 =0.0238) was observed. Results indicate that the participant had the ability to maintain SR strategy for the first half of the marathon, however as fatigue onset occurred this ability decreased. Running strategies on SR during fatigue may be of future use to recreational runners.
Listed In: Biomechanics, Gait, Sports Science


Hamstring Stiffness is Related to Anterior Tibial Translation when Transitioning from Non-weight Bearing to Weight Bearing

Anterior tibial translation (ATT) is shown to load the anterior cruciate ligament (ACL) as the knee transitions from non-weight bearing (NWB) to weight bearing (WB). Therefore, any factors able to effectively reduce ATT during initial WB would theoretically reduce ACL loading. This study evaluated the extent to which hamstring musculo-articular stiffness (KHAM) is associated with ATT as the knee transitions from NWB to WB in 10 healthy females (19.9 ± 1.5 yrs, 1.65 ± 0.06 m, 62.3 ± 6.3 kg). Linear regression revealed that KHAM predicted 48.6% of the variance in ATT (R^2 = .486, p = .025), with higher KHAM being associated with less ATT. KHAM is modifiable through training, and thus may be an important factor to consider from ACL injury prevention and rehabilitation perspectives.
Listed In: Biomechanics, Sports Science


Effects of a leaf spring structured midsole shoe on the foot kinematics in overground and treadmill running

The concept of a leaf spring structured midsole shoe (LEAF) is based on shifting the foot anteriorly during the first part of stance phase in heel-toe running. The aim of the current study is to analyze the effects of a LEAF compared to a standard foam midsole shoe (FOAM) on the foot kinematics in overground and treadmill running at two running speeds. Nine male heel strikers ran on a treadmill with the LEAF and the FOAM at 3 and 4 m/s, each for 5 min. Furthermore, the participants performed with both shoes six runs each on a 40 m indoor track at running speeds of 3 and 4 m/s. For one stance phase the ground reaction forces were measured using a force plate imbedded in the track. Running speed and shoe order were randomized. Kinematics (VICON, 200Hz) and kinetics (AMTI, 1000Hz; only overground) were used to calculate the anterior shift of the foot, the foot ground angle at heel strike (FGA at HS) and the horizontal path of the center of pressure (COP). The LEAF increases the anterior foot shift in treadmill and overground running at both running speeds compared to the FOAM, without changing the individuals’ strike pattern. Furthermore, the anterior foot shift affects the COP leading to an overall enlarged COP path. These findings indicate a benefit of the structured midsole on performance at least at moderate running speeds
Listed In: Biomechanics, Sports Science


Stud Type Affects Knee Biomechanics on Infilled Synthetic Turf during a 180° Cut, but not during a Single-Leg Land-Cut Task

Higher ACL injury frequencies have been reported on synthetic turfs compared to natural turfs. However, assessments of cleat stud type on lower extremity biomechanics worn on these surfaces are limited. The purpose of this study was to examine the knee biomechanics of a non-studded running shoe (RS), a football shoe with natural turf studs (NTS), and with synthetic turf studs (STS) during single-leg land-cut and 180°-cut tasks on synthetic turf. Fourteen recreational football players performed five trials of 180°-cut and land-cut tasks in the three shoe conditions on an infilled synthetic turf. Knee biomechanics were analyzed using a 2x3 (task x shoe) repeated measures ANOVA followed by post-hoc paired samples t-tests (p<0.05). For the 180° cut, 1st peak internal knee adduction moments were increased in RS and STS compared to NTS (Table) and in 1st peak knee extensor moments in RS compared NTS and STS. The peak negative knee extensor power was increased in RS compared to NTS and STS. The land-cut had significantly greater peak extensor moments, sagittal plane powers, and abduction angles, and significantly lower adduction moments compared to the 180°-cut. As expected, the land-cut movement involved increased power absorption, power generation, and extensor moment compared to the 180°-cut. However, shoe effects lie only in the 180°-cut. Decreased medial ground reaction force1, knee adduction and extensor moments in NTS suggest the knee may be in a safer environment using these studs during cutting maneuvers. Reduced knee adduction moments in NTS could have implications in non-contact ACL injury.
Listed In: Biomechanics, Gait, Sports Science


Biochemical markers of type II collagen degradation and synthesis are not associated with biomechanical variables in patients following ACL reconstruction.

This study investigated the association of serum C-propeptide (sCPII), urinary CTX-II (uCTX-II), and uCTX-II:sCPII with peak vertical ground reaction force (PVGRF) and quadriceps strength during jump-landing in patients with ACL reconstruction (ACLR). METHODS: twenty two patients with ACLR (Male=14, age=19.6 ± 4 yr) were tested 20 weeks after the surgery. Blood and urine samples were collected. sCPII and uCTX-II, biomarkers of articular degradation and synthesis respectively, were analyze using commercial ELISAs. Subjects performed 3 trials of a forward drop land and a drop vertical jump. Subjects started on a 20 cm step and landed on a force platform (AMTI). PVGRF was analyzed on the surgical side. Quadriceps strength (PKET) was assessed with an isokinetic dynamometer (60°/s). PVGRF and PKET were normalized to body weight (BW). Pearson’s correlation, with and without adjustment for age, was used to analyze associations among variables. RESULTS: Mean (± SD) log concentrations were 2.88 ± 0.19 and 3.32 ± 0.49 ng/mmol for sCPII and uCTX-II respectively; and for uCTXII:CPII was 1.16 ± 0.18. PVGRF was 3.2 BW ± 0.3 and 1.4 BW ± 0.3 for the forward drop land and drop vertical jump tasks, respectively; PKET was 0.92 BW ± 0.2. There were no significant correlations among variables (p≥0.2), except for a trend towards a positive correlation between PKET and uCTXII:sCPII (r = 406, p = .076). CONCLUSSIONS: Biomarkers of type II collagen metabolism were not associated with jump-landing forces. However, higher quadriceps strength may be associated with a shift in articular cartilage metabolism towards degradation.


Listed In: Biomechanics, Orthopedic Research, Physical Therapy, Sports Science


The Influence of Trunk Posture on Hip and Knee Moments during Over-ground Running

A high incidence of lower extremity injuries has been reported in runners, with half of the injuries occurring at the knee joint. Sagittal plane trunk posture was shown to influence hip and knee kinetics during landing. This suggests trunk posture may be a risk factor of running injuries. The purpose of this study was aimed to examine the influence of sagittal plane trunk posture on hip and knee kinetics during running. Forty runners were recruited. Three-dimensional kinematics (250Hz, Qualisys) and ground reaction force data (1500Hz, AMTI) were collected while subjects ran with a self-selected trunk posture (speed: 3.4m/s). Mean trunk flexion angle and peak hip and knee extensor moments during the stance phase were calculated. Subjects were dichotomized into High-Flex and Low-Flex groups based on trunk flexion angles. On average, the two groups demonstrate 7.4°difference in trunk flexion. Independent t-tests showed that the Low-Flex group demonstrated significantly higher knee extensor moments and lower hip extensor moments compared to the High-Flex group. Pearson correlations showed that trunk flexion angle was positively correlated with peak hip extensor moment (r=0.44) and inversely correlated with peak knee extensor moment (r=-0.51). The results suggested a small difference in trunk flexion angle has significant influences on hip and knee kinetics. Individuals who run with a more upright trunk posture may be predisposed to a higher risk of patellar tendinopathy and patellofemoral pain. Incorporating a forward lean trunk may be utilized as an intervention strategy to reduce knee loading and risk of knee injuries in runners.


Listed In: Biomechanics, Physical Therapy, Sports Science


Residual Force Enhancement in Context of Everyday Human Movement

When an active muscle is stretched, the resulting post-eccentric steady-state force is known to be greater than the isometric force at the corresponding muscle length. The aim of our research was to clarify if residual force enhancement (RFE) is relevant for voluntary human muscle action in everyday like scenarios. Therefore 13 healthy subjects participated in our study and had to perform bilateral leg extensions using a motor-driven leg press dynamometer, measuring external reaction forces (Fext) as well as activity of 9 lower extremity muscles. In addition, ankle (Ma) and knee (Mk) joint torque were calculated using inverse dynamics. Subjects performed isometric and isometric-eccentric-isometric contractions (20° stretch, ω=60°/s) at 30% of maximum voluntary activation. Visual feedback of VL muscle activation was given to control submaximal muscle action. We did not find differences in VL activation level between contraction conditions and time points. Mean VL activity ranged between 29.1 ± 2.2% and 29.8±2.5% MVA. We found significantly enhanced Fext (p < 0.002) as well as joint torques in knee (p < 0.002) and ankle joint (p < 0.033) for all instances in time. In summary RFE seems to be relevant in everyday like human motion.


Listed In: Biomechanics, Sports Science


Accelerometry for outdoor effort quantification

Assessing the lower limb properties in-situ is of a major interest for analyzing the athletic performance. From a physical point of view, the lower limb could be modeled as single linear spring which supports the whole body mass. The main mechanical parameter studied when using this spring-mass-model is the leg-spring stiffness (k). In laboratory conditions, the movements are assessed using a force plate (Meth1) which measures the ground reaction force (GRF), and a motion capture system which could estimate the displacement of the centre of mass (CoM). In this way, k is calculated as shown in equation (2).More recent methods allow to calculate k in field conditions by using either foot switches (Meth2) or accelerometry-based instruments (Meth3) which are both wireless devices. The associated calculated methods assume that force-time signal is a sine wave, described by the equation (3) with equation (4) (CT: contact time; FT: flight time). In these cases, the kinematic measurement (CoM) could be calculated either by a mathematical approach (Eq.(5)) (meth2), or by double integrating the acceleration (meth3) in order to calculate k.Thanks to their transportability, the methods 2 and 3 offer not only the possibility to assess the lower limb movements, but also, to objectively follow up the athletic abilities (performance, reactivity, force and power, stiffness) in-situ.


Listed In: Biomechanical Engineering, Biomechanics, Sports Science