Sports Science

Flexion Angle Dependent Differences in Joint Kinematics and ACL Force In Response to Applied Loads Are Conserved Throughout Skeletal Growth in the Porcine Stifle Joint

The anterior cruciate ligament (ACL) stabilizes the lower limb against translational and rotational loads while the knee is is multiple postures. Surgical reconstruction, the most common treatment for ACL tears, is intended to replicate the biomechanical function of the native ACL in the postures and activities related to daily living and high-impact activities. In order to improve outcomes from ACL reconstructions in patients in pediatric and adolescent age groups, we need to improve our understanding of the knee posture dependent biomechanical function of the ACL. As such, the objective of this study was to quantify flexion angle dependent changes in the response of the ACL and the total knee to applied loads in the anterior-posterior and varus-valgus directions using a skeletally immature porcine model. To do this, we collected stifle (knee) joints from female Yorkshire-cross pigs at ages ranging from 1.5 to 18 months (n=30 total). The joints were tested using a 6 degree-of-freedom universal force sensing robotic system under applied anterior-posterior loads and varus-valgus moments at 40° and 60° of flexion. Studied parameters included anterior-posterior tibial translation (APTT), varus-valgus rotation (VVR), and anterior force carried by the ACL and its anteromedial and posterolateral bundles. We found increased knee laxity (APTT and VVR) was associated with both younger age and increased knee flexion. Greater anterior force carried in the ACL, and specifically in the anteromedial bundle, was associated with increased flexion, regardless of age. These findings have implications in intraoperative graft assessment and biomechanical models.
Listed In: Biomechanical Engineering, Biomechanics, Orthopedic Research, Sports Science

Does Type of Unanticipated Stimulus Alter Knee Mechanics During Dynamic Tasks?

Noncontact ACL injuries occur during movements that involve sudden decelerations and changes in direction due to combined sagittal and frontal plane knee loading. Previous studies have shown altered knee mechanics when decision-making is involved, which may better simulate game-like scenarios in a lab setting. The purpose of this study was to determine how two unanticipated stimuli alter knee biomechanics during a dynamic task. Eight females and eight males, all recreationally-active, participated. Participants completed two unanticipated 45-degree cutting conditions (visual stimulus (VS); human defensive opponent (DO)). For the VS condition, a custom computer program presented one of three visual stimuli in a random order. For the DO condition, a research assistant attempted to “block” the participant’s running path with a defensive move, using the same three random-order tasks as in VS. For both conditions, participants had a reaction time range of 400-500 milliseconds. Separate 2×2 mixed-model repeated measures ANOVAs (condition×sex) were performed, with an alpha level of .05. Results showed a significant condition main effect for knee extension moments, which were greater in DO compared to VS (p=.009). Significant interactions were present for peak knee flexion angles and peak knee adduction moments. Females had greater flexion angles (p=.001) and adduction moments (p=.030) in VS compared to DO. Women had less knee flexion and more adduction moment in VS, possibly suggesting this stimulus amplifies ACL injury risk factors in females. A human defender increased sagittal plane loading in a manner that may better represent loading in game situations.
Listed In: Biomechanics, Sports Science

Effects of Increased Q-Factor on Knee Biomechanics During Stationary Cycling

Q-Factor (QF), the inter-pedal width, in cycling is the analog to step-width in gait. Increased step-width has been shown to reduce peak knee abduction moment (KabM), however no studies have examined the frontal plane biomechanics with increased QF in cycling. The purpose of this study was to investigate the effects of increased QF on frontal plane knee biomechanics during cycling in healthy participants. Sixteen healthy participants (age: 22.4 ± 2.6 yr, BMI: 22.78 ± 1.43 kg/m2) participated in this study. A motion analysis system and customized instrumented pedals were used to collect five trials of three-dimensional kinematic (240 Hz) and pedal reaction force (PRF, 1200 Hz) data in twelve testing conditions, four QF conditions of Q150 (150 mm), Q192 (192 mm), Q234 (342 mm), Q276 (276 mm), and three workrate conditions of 80 W, 120 W, and 160 W. A 3 × 4 (QF × workrate) repeated measures ANOVA was performed to analyze differences between conditions (p < 0.05). Increased QF increased peak KAbM 47, 56, and 56% from Q150 to Q276 at each workrate respectively. Mediolateral PRF increased 46, 57, and 57% from Q150 to Q276 at each workrate. Frontal plane knee angle and range of motion (ROM) decreased with increased QF. No changes were observed for peak vertical PRF, knee extension moment, sagittal plane peak knee joint angles or ROM. Conclusions: These results indicate increasing QF will increase peak KAbM. Future studies should examine the effects of increased QF on obese and knee osteoarthritis patients.
Listed In: Biomechanics, Sports Science

Lower Extremity Muscle Contributions to Ground Reaction Force during a Stop-Jump Task

Females commonly use a landing technique that creates higher impact forces when contacting the ground, thus leading to higher ground reaction force (GRF) acting upon the lower extremities, leading to an increased risk of injury. The lower extremity musculature plays a critical role in absorbing the energy of these impact forces during landing. Understanding how specific muscle groups contribute to ground reaction force may offer insight to creating more advanced landing retraining protocols. The purpose of this study was to observe how lower extremity muscle groups contribute to GRFs during an unanticipated stop-jump task. 3D musculoskeletal simulations of unanticipated stop-jump tasks were completed for five healthy females. Participant-specific scaled musculoskeletal models (modified gait2392) were generated. A pseudo-inverse induced-acceleration analysis was used to determine individual muscle group contribution to 3D GRFs. Means ± standard deviations were calculated for each muscle group during the landing phase. The vasti, soleus, and the gluteus maximus muscle groups were most responsible for bodyweight support, with the vasti and the soleus being the largest contributors (375.84±88.64 N; 267.39±103.70 N, respectively). The vasti group (165.63±74.94 N) were primarily responsible for braking and propulsion. Finally, the gluteus maximus, gluteus medius, and vasti group were the major generators in producing a medially-directed GRF, with the vasti group as the largest contributor (118.05±32.83 N). The vasti, soleus, and gluteus maximus appears to be the overall largest contributors to 3D GRFs. Landing retraining protocols may want to consider targeting these muscle groups specifically to improve landing performance and decrease injury risk.
Listed In: Biomechanics, Sports Science, Other

Relationship between Range of Motion, Strength, Upper Quarter Y-balance Test and a history of Shoulder Injury among NCAA Division I Overhead Athletes

Background: Several risk factors have been identified as contributors to the development of shoulder injuries, including glenohumeral internal rotation deficit, rotator cuff weakness, and shoulder instability. However, lasting deficits of the physical characteristics among overhead athletes with a history of a shoulder injury are unknown. Objective: To compare shoulder range of motion (ROM), strength, and upper-quarter dynamic balance between collegiate overhead athletes with and without a history of a shoulder injury. Methods: 58 overhead athletes were distributed into a shoulder injury history group (n=25) and healthy group (n=33). All participants were fully participating in NCAA Division I baseball, softball, volleyball, or tennis and free of any symptoms of shoulder injuries. An investigator measured active ROM for dominant shoulder internal rotation (IR), external rotation (ER), and horizontal adduction (HAD) using a digital inclinometer. Isometric strength for dominant shoulder IR and ER at 90° of abduction was measured using a hand-held dynamometer. The upper quarter dynamic balance was assessed via the Upper Quarter Y-Balance Test (UQYBT). Results: The injury group demonstrated a lower UQYBT mean score in the superolateral direction. However, there were no statistically significant intergroup differences in shoulder ROM, strength, ER/IR strength ratio, and UQYBT in the medial direction and inferolateral direction. Conclusions: Overhead athletes with a previous history of shoulder injury had poorer UQYBT in the superolateral direction despite a lack of ongoing symptoms or deficits in function. Well-planed dynamic balance training and related strengthening exercises may be warranted for overhead athletes to improve their upper quarter functions.
Listed In: Physical Therapy, Sports Science, Other

Could lowering the tackle height law to below the chest in rugby union reduce long-term brain degeneration?

The tackle height law in rugby union has been an area of concern for many years. It is currently set at the line of the ball carrier’s shoulder. The goal of this study is to use Model-Based Image-Matching (MBIM) and human volunteer tackles in a marker-based 3D motion analysis laboratory to examine the severity of a legal tackle to the shoulder/chest of the ball carrier (with no head contact) and the effect of tackles above and below the chest on ball carrier inertial head kinematics, respectively. From the real-world tackles, the estimated ball carrier peak resultant change in head angular velocity was 30.4 rad/s (23.1 rad/s, 14.0 rad/s and 21.8 rad/s in the coronal, sagittal and transverse direction, respectively). In the staged tackles, the median peak resultant head linear and angular acceleration and change in head angular velocity values for tackles above the chest were greater than for below the chest. The results support the proposition of lowering the current tackle height law. Due to the real-world tackle (MBIM), the ball carrier head kinematics indicated a greater than 75% chance of sustaining a concussion, based on the literature. This was the case even though no contact was made with the ball carrier’s head. Therefore, repeatedly engaging in this type of legal tackle may be detrimental for long-term brain health. However, by lowering the tackle height law to below the chest, ball carrier inertial head kinematics can be reduced significantly, thus reducing the repetitive loading placed on the brain.
Listed In: Biomechanical Engineering, Biomechanics, Sports Science

Kinetics and kinematics of the lower extremity during performance of two typical Tai Chi movements by the elders

Tai Chi (TC) has the rehabilitative potential to prevent falls in the elderly, however it is unclear how TC training improves postural control capacity. Fifteen male participants with more than 4 years of TC experience were asked to perform two TC movements, the “Repulse Monkey (RM)” and “Wave-hands in clouds (WHIC).” Three-dimensional (3-D) temporospatial, kinematic and kinetic data was collected using VICON motion analysis system with 10 infrared cameras and 4 force plates. Stride width, step length, step width, single- and double-support times, center of mass (COM) displacement, peak joint angles, range of motion, peak joint moments, time to peak moment, and ground reaction force (GRF) were analyzed. The differences in the measurements of the two TC movements were compared with walking using two-way ANOVA analysis. Compared with walking kinematics, both TC movements spent less time in single-support; RM and WHIC had larger mediolateral and vertical displacement of the COM. Compared with walking kinetics, both TC movements generated significantly smaller peak ground reaction forces in all directions, except the anterior; larger hip extension, adduction and internal rotational moments, knee adduction/abduction and internal rotation moments and eversion/inversion and external/internal moments of ankle–foot; and longer peak moment generation time for hip extension, adduction and internal rotation, knee extension and ankle dorsiflexion and inversion. The slow, gentle stepping-action and loading patterns that are consistent with the mechanical behavior of biological tissues. These two TC movements would be suitable training to help strengthen the lower extremities and prevent falls in the elderly.
Listed In: Biomechanics, Gait, Sports Science

Association of isometric hip and ankle strength with frontal plane kinetics in females during running

Frontal plane mechanics have been associated with running-related injuries such as patellofemoral pain. Strengthening and gait retraining programs aimed at reducing hip adduction during running have been shown to be effective at alleviating symptoms, however evidence of their effect on running kinematics is equivocal. It is possible that such programs exert their benefits through altering kinetics rather than kinematics in the frontal plane during running. Further, the contributions of the ankle to frontal plane mechanics have not been well studied. PURPOSE: To determine if hip and ankle strength are associated with frontal plane kinetics in female runners. METHODS: 64 healthy women running at least 16km per week participated in this study. Isometric hip abduction and ankle inversion strength were measured using a handheld dynamometer. 3D gait analysis was conducted as participants ran on an instrumented treadmill at 2.7 m/s. Participants were ranked in order of isometric strength of both the hip and ankle, and divided into tertiles of high, medium and low strength. 2-way MANOVA was used to determine the relationship between strength and peak moment, positive work and negative work in the frontal plane of the hip and the ankle. Tukey post-hoc tests were conducted where applicable (α=0.05). RESULTS: There was no significant interaction effect, or main effect of hip strength. There was a significant main effect of ankle strength on frontal plane kinetics (p=0.024). Specifically, the strong ankle group compared to the weak ankle group had significantly greater magnitude of peak ankle inversion moment (0.95(0.32) vs 0.68(0.22) Nm/kg, p=0.033), hip abduction moment (-2.78(1.02) vs -1.88(0.24) Nm/kg, p=0.002) and hip frontal plane positive work (0.27(0.19) vs. 0.13(0.03) W/kg, p=0.006). CONCLUSION: Isometric ankle but not hip strength is associated with kinetics in the frontal plane during running in females. Thus ankle strength should not be overlooked in clinical evaluation and treatment of runners.
Listed In: Biomechanics, Gait, Physical Therapy, Sports Science

Hinged ankle braces do not alter knee mechanics during sidestep cutting

Lateral ankle sprains, caused by rapid ankle inversion, and noncontact anterior cruciate ligament (ACL) knee injuries, caused by excessive knee loading, are among the most common lower extremity injuries that occur during dynamic tasks, such as cutting. Ankle braces are commonly used to prevent lateral ankle sprains by reducing ankle inversion. There is limited and conflicting research about how an ankle brace affects other joints, such as the knee, during cutting movements. It is also not known if sex differences exist during a cutting task when an ankle brace is present. The purpose of this study was to determine the effects of an Ultra Zoom® hinged ankle brace and sex on ankle and knee biomechancis during a cutting maneuver. Eighteen recreationally active adults completed sidestep cutting trials with and without an Ultra Zoom® ankle brace. Three-dimensional ankle and knee kinematics and GRF were collected. Separate 2×2 (sex × brace) repeated measures ANOVAs were used. Results indicated the brace reduced frontal plane ankle kinematics and had no effect on knee kinematics. Additionally, females demonstrated decreased knee flexion compared to males. An ankle brace during a cutting maneuver restricted frontal plane ankle movement. Furthermore, the only significant changes in knee mechanics were due to sex differences, which has been well documented. These findings indicate that the use of an Ultra Zoom® hinge brace is suitable for sports, reduces the risk of lateral ankle injuries, and does not alter knee mechanics, and therefore may not increase the risk of ACL injury.
Listed In: Biomechanics, Sports Science

Increased Role of the Secondary Passive Stabilizers Following Complete but Not Partial Loss of Anterior Cruciate Ligament Function During Post-Natal Growth

Robotic testing was performed with a 6-degree of freedom load cell in order to analyze functional contributions of the soft tissues in the knee under physiologically relevant loading conditions. Age groups ranging from 1.5 months to 18 months, porcine equivalent to early youth through late adolescent human ages, were studied. Complete ACL transection resulted in increased APTT and VVR across all ages (p<0.05), while injury to the AM bundle did not affect APTT or VVR. Additionally, increasing age resulted in decreased APTT normalized to the tibial plateau (p<0.05) and an average 19° decrease in VVR across states from 0 to 18 months of age (p<0.05). The ACL was the primary restraint against anterior drawer in the intact knee state [75-111%]. Following AM bundle dissection, the PL bundle carried the vast majority of the anterior load regardless of age [66-112%]. Following complete ACL transection, the MCL and medial meniscus carried most of the force across ages under anterior drawer. The LCL contributed increasing resistance to varus torque across states with age, as did the MCL under valgus torque.
Listed In: Biomechanical Engineering, Biomechanics, Orthopedic Research, Sports Science