Physical Therapy

Acute Effects of Lateral Ankle Sprains on Range of Motion, Single Limb Balance, and Self-Reported Function

One in three individuals who suffer a lateral ankle sprain (LAS) subsequently develop chronic ankle instability. However, our inability to properly treat acute LAS is not surprising given our limited understanding of post-LAS consequences. 12 patients (21.6±2.9yrs; 172.9±13.1cm; 79.1±21.4kg) with an acute LAS participated. All participants were evaluated for dorsiflexion range of motion (DFROM), time-to-boundary (TTB) in single limb balance (SLB), and self-reported function (SRF) at 1-week, 2-weeks, 4-weeks, 6-weeks, and 8-weeks post injury. Both the involved and uninvolved limbs were measured during the patients first test session. DFROM was assessed using the weight-bearing lunge test and all participants performed 3, 10s of single limb stance with eyes open on a force plate to measure their single limb balance. SRF was measured using the Foot and Ankle Ability Measure (FAAM) and FAAM-Sport (FAAM-S). Post injury time points were compared to a control condition using multivariate ANOVAs (α=0.05). Relative to the control condition, FAAM and FAAM-S were significantly lower at 1-week and 2-weeks post injury. The FAAM-S was also significantly lower score compare to control condition at 4-weeks post-injury. Both FAAM and FAAM-S were not significant different at 6-weeks post-injury. Post-injury TTB measures and DFROM were not significantly different from the control condition. Non-significant declines in DFROM and TTB were observed as in this sample of acute LAS and appear to present with unique recovery patterns. Different recovery patterns among the tested outcomes indicate the need for further research with a larger cohort and for a longer post-injury duration.


Listed In: Biomechanics, Physical Therapy, Posturography, Sports Science


A preliminary study on quality of knee strength measurements by means of Hand Held Dynamometer and Optoelectronic System

Strength measurements are popular in the clinical practice to evaluate the health status of patients and quantify the outcome of training programs. Currently a common method to measure strength is based on Hand Held Dynamometers (HHD) which is operator-dependent. Some studies were conducted on repeatability of strength measurements but they were limited to the statistical analysis of repeated measurements of force. In this work, the authors developed a methodology to study the quality of knee flexion/extension strength measurements by measuring the effective HHD position and orientation with respect to the patient. HHD positioning attitude was measured by means of an Optoelectronic System for which a marker protocol was defined ad-hoc. The approach allowed to assess quality of measurements and operator’s ability by means of quantitative indices. The protocol permitted the evaluation of: angles of HHD application, angular range of motion of the knee and range of motion of the HHD. RMSE parameters allowed to quantify the inaccuracy associated to the selected indices. Results showed that the operator was not able to keep the subject’s limb completely still. The force exerted by the subject was higher in knee extension and the knee range of motion was higher than expected, however the operator had more difficulties in holding the HHD in knee flexion trials. This work showed that HHD positioning should be as accurate as possible, as it plays an important role for the strength evaluation. Moreover, the operator should be properly trained and should be strong enough to counteract the force of the subject.
Listed In: Biomechanical Engineering, Biomechanics, Physical Therapy, Sports Science


Sensory contributions to standing balance in unilateral vestibulopathy

Patients with unilateral peripheral vestibular disorder (UPVD) have diminished postural stability and therefore the aim of this study was to examine the contribution of multiple sensory systems to postural control in UPVD. Seventeen adults with UPVD and 17 healthy controls participated in this study. Centre of pressure (COP) trajectories were assessed using a force plate during six standing tasks: Forwards and backwards leaning, and standing with and without Achilles tendon vibration, each with eyes open and eyes closed. Postural stability was evaluated over 30s by means of: total COP excursion distance (COPPath) and the distances between the most anterior and posterior points of the COPPath and the anterior and posterior anatomical boundaries of the base of support (COPAmin and COPPmin). In addition, the corrected COPAmin and COPPmin was assessed by taking the corrected base of support boundaries into account using the anterior and posterior COP data from the leaning tasks. UPVD patients showed a tendency for smaller limits of stability during the leaning tasks in both directions. Subject group and task condition effects were found (P<0.05) for COPPath, (i.e. higher values for patients compared to controls). UPVD patients showed lower (P<0.05) COPPmin values compared to the control group for all conditions (more pronounced with the corrected COPPmin). Disturbance of the visual system alone lead to a distinct postural backward sway in both subject groups which became significantly more pronounced in combination with Achilles tendon vibration. The individual limits of stability should be considered in future research when conducting posturographic measurements.
Listed In: Biomechanics, Neuroscience, Physical Therapy, Posturography


Perception of Self-Motion Impacts the Variability of Plantar Propulsion Force in Diabetes

People with diabetes mellitus (DM) have been reported of increased ground reaction force (GRF) and plantar propulsion force (PPF) that will worsen the formation of plantar ulcer. The reliance of perception of self-motion has been previously addressed for maintaining stability during locomotion in DM. Therefore, we speculate that perception of self-motion will affect DM’s plantar force adjustment by decreasing GRF/PPF along with reducing of variability (CV). We recruited five DMs and three healthy controls to walk on an instrumented treadmill with their self-selected pace. All subjects went through three no self-motion and three self-motion walking trials (120s/trial). The self-motion was generated by presenting a virtual corridor that moved toward subjects with their matched velocity. Three-axis force data were recorded at 300 Hz. Two-factor ANOVA with repeated measures were conducted to examine the role of visual cue impacts GRF/PPF in DM and age-matched healthy. The visual cue and group factors show significant interaction on PPFPeak and PPFCV. The following comparisons showed significant visual effect on reducing: (1) PPFPeak in healthy controls; (2) PPFCV in DM patients. Generally, the decreased PPFPeak and PPFCV founded in this study were in line with previous study and can be explained as the optimization of neuromuscular locomotor system in the anteroposterior direction. Furthermore, visual perception of self-motion shows its effect on reducing PPFPeak during toe-off in healthy controls. Lastly, the significant decreased PPFCV of DM versus healthy stands for the reduced human movement variability observed in DM’s neuromuscular locomotor system when perception of self-motion is provided.
Listed In: Biomechanics, Gait, Physical Therapy


Static postural control does not strongly predict dynamic gait stability recovery following a trip in adults with and without vestibular dysfunction

Unilateral peripheral vestibular disorder (UPVD) negatively affects upper and lower body motor performance, but postural control during quiet stance in UPVD patients has not been directly compared with dynamic stability control after an unexpected perturbation during locomotion. We analysed centre of pressure (COP) characteristics during static posturography in UPVD patients and healthy controls and compared this with performance of a trip recovery task. 17 UPVD patients and 17 healthy controls were unexpectedly tripped while walking on a treadmill. The margin of stability (MoS) was calculated at touchdown (TD) of the perturbed step and the first six recovery steps. Posturography was used to assess postural stability during 30 seconds of standing with eyes open and closed using a force plate. The trip reduced the MoS of the perturbed leg (p<0.05) with no significant differences in MoS between the groups. Controls returned to MoS baseline level in five steps and patients did not return within the six steps. UPVD patients showed a greater total COP sway path excursion (closed eyes only), anterior-posterior range of COP distance and a more posterior COP position in relation to the posterior boundary of the base of support. There were no significant correlations between COP sway path excursion and MoS values. We concluded that UPVD patients have a diminished ability to control and recover dynamic gait stability after an unexpected trip and lower static postural stability control compared to healthy matched controls, but that trip recovery and static postural control rely on different control mechanisms.
Listed In: Biomechanics, Gait, Neuroscience, Physical Therapy, Posturography


Auditory Cues on Postural Control in Parkinson&#039;s Disease: A Pilot Study

Objective: To evaluate the effect of auditory cues toward postural control in patients with Parkinson's disease (PD). Background: Auditory cues have been proved to be one of rehabilitation strategies for PD [1]. Most of Parkinson's Disease patients present postural instabilities regarding the severity of the disease [2, 3]. Rhythmic Auditory Stimulation (RAS) has been justified to be a standardized neurological motor therapy (NMTs) in PD, which cue-ing benefits may be associated with the activation of cerebellum-thalamic-cortical circuitry [4]. A potential method to stimulate the putamen that might help regulate PD brain's circuits could be providing music as a rhythmical cue [4]. A distinct manifestation in PD is also the arm swing reduction [5] which limits the capability of maintaining balance. It is rare to explore the static standing balance in Parkinson's Disease. Methods: 5 idiopathic PD patients (5 female) aged 72.6 ± 2.51 years, duration of the disease 15 ± 1.22 years (mean ± SD), H&Y 2.5-3 participated in this study. They were recruited from Yawata Medical Center, Ishikawa, Japan in June and November, 2014. The subjects were instructed to stand on the balance platform (Nintendo Wii Fit) and swing arm; Alternation (Alt) and Synchronization (Syn) in 3 scenarios; with no auditory cues (AC), with AC 5% increased and with AC 5 % decreased. The data were analyzed by Wilcoxon Signed Ranks Test and the dimensional clustering method [6] on MATLAB. Results: Tempo at 95% improved area, RMS and Min ML in Alternation, and decreased the path length in rest 2. Tempo at 105% decreased area and RMS in rest 2 statistically significant. A case with H&Y stage 3 showed poorer postural control in both Antero-Posterior (AP) and Medio-Lateral (ML) directions. Most cases presented the higher Center of Pressure (CoP) displacement in ML direction. AC with arm swing regulated the pattern of CoP trajectories. Conclusions: Auditory cues with arm swing - Alternation improved postural control in the PD patients. This concept might be considered clinically to be a rehabilitation program for Parkinson's disease (PD) to improve standing balance. It is a need to enlarge the sample size and develop more rehabilitation programs for improving balance in PD.
Listed In: Physical Therapy, Posturography


Effect of Transcutaneous Electrical Nerve Stimulation on Gait Kinematics in Subjects with Anterior Knee Pain

Knee pain is 1 of 5 leading causes of disability by altering lower-extremity muscle function and gait mechanics. While transcutaneous electrical nerve stimulation (TENS) mitigates deficits of muscle function due to pain, it is unclear whether TENS improves gait mechanics. Each of 15 participant (24±3yrs, 71±12kg, 178±7cm) was assigned to the TENS or matched placebo group (23±2yrs, 72±14kg, 177±9cm). Participants underwent 3 different experimental saline infusion sessions (hypertonic, isotonic, control) in a counterbalanced order, separated by 48-h. Hypertonic (5% NaCl) or isotonic (0.9% NaCl) saline was infused into the infrapatellar fat pad for 50-min. No infusion was administered to the control session. Participants and investigators were blinded to the saline solution. A 20-min TENS or placebo treatment was administered, which was blinded to participants. Gait kinematic data were collected using the high-speed video (240 Hz) and force-sending tandem treadmill (1200 Hz) at each time interval (baseline, infusion, treatment, post-treatment). Functional ANOVA (α=0.05) were used to evaluate difference between 2 groups (TENS, placebo) over time. Pairwise comparison functions with 95% confidence interval were plotted to determine specific difference. Hypertonic saline infusion (pain) resulted in increased (1) ankle dorsiflexion (38-75% of stance), (2) knee valgus (20-40%), (3) knee flexion (40-90%), (4) hip adduction (72-100%), (5) hip flexion (50-90%). However, there was no group x time interaction for all kinematics. Altered gait strategies due to pain may play a role in long-term compensation that could have consequences for the joint. TENS treatment, however, did not acutely reduce the deficits in aforementioned kinematic variables.


Listed In: Biomechanics, Gait, Neuroscience, Physical Therapy


Influence of femur rotation and knee valgus on patellofemoral stress

Background: Patellofemoral pain (PFP) is a common condition seen in orthopedic practice. A commonly cited hypothesis as to the cause of PFP is increased patellofemoral joint (PFJ) stress secondary to abnormal lower extremity kinematics (ie. excessive hip internal rotation and knee valgus). However, the influence of these motions on PFJ contact mechanics is unknown. Purpose: To assess the influence of hip rotation and knee valgus on PFJ stress using finite element (FE) analysis. Methods: Patella cartilage stress profiles for a healthy participant were quantified utilizing a subject-specific FE model. Input parameters included: joint geometry, quadriceps muscle forces, and weight-bearing PFJ kinematics. Using a nonlinear FE solver, quasi-static loading simulations were performed to quantify patella cartilage stress during a static squatting maneuver (45° knee flexion). To simulate hip rotation (0-8°) and knee valgus (0-12°), the femur and tibia were rotated in the transverse and frontal plane respectively in 2° increments. Results: Increasing hip rotation resulted in a linear increase in patella cartilage stress. In contrast, increasing knee valgus resulted in a decrease in patella cartilage stress. The combination of hip rotation and knee valgus did not result in higher PFJ cartilage stress compared to isolated hip rotation. Conclusions: Patella cartilage stress appears to be influenced to a greater degree by hip internal rotation as opposed to knee valgus. Surprisingly, higher degrees of knee valgus resulted in decreased cartilage stress (in the absence of hip rotation). Our finding supports the premise that persons exhibiting excessive hip internal rotation may be pre-disposed to elevated patella cartilage stress.
Listed In: Biomechanics, Gait, Physical Therapy


Improved Prosthetic Gait Following Amputee-Specific Physical Therapy.

Following amputation, an amputee must learn to walk again using a prosthesis. A goal of prosthetic rehabilitation is to reduce and eliminate asymmetries between the prosthetic leg and sound leg which may decrease the negative effects of long term force and work demands on the sound leg. An amputee-specific physical therapy program provides structured motor learning to aid in developing proper gait mechanics. However, physical therapy is not standard of care for all individuals receiving their first prosthesis due to limited evidence showing improved gait. Thus, the purpose of this study was to determine whether amputees receiving physical therapy have better gait mechanics than those that do not. It was hypothesized that those who underwent an amputee-specific physical therapy program would display a more symmetrical gait pattern. Transtibial amputees walked overground at self-selected pace while kinetic (600Hz) and kinematic (60Hz) data were collected. The therapy group had previously received 2-3 therapy sessions per week for 3 months. Asymmetries were determined through dependent t-tests (α=0.05) comparing sound leg and prosthetic leg kinetic variables. Of the 23 kinetic variables tested, 17 variables showed significant difference between the sound leg and prosthetic leg for the group that did not receive the amputee-specific physical therapy. For the group that had previously received the therapy, only 4 variables showed differences between the sound and prosthetic leg. Thus, we showed that individuals partaking in amputee-specific physical therapy have a more symmetrical gait which results on less force and energy demands on the sound leg.
Listed In: Biomechanics, Gait, Physical Therapy


Biochemical markers of type II collagen degradation and synthesis are not associated with biomechanical variables in patients following ACL reconstruction.

This study investigated the association of serum C-propeptide (sCPII), urinary CTX-II (uCTX-II), and uCTX-II:sCPII with peak vertical ground reaction force (PVGRF) and quadriceps strength during jump-landing in patients with ACL reconstruction (ACLR). METHODS: twenty two patients with ACLR (Male=14, age=19.6 ± 4 yr) were tested 20 weeks after the surgery. Blood and urine samples were collected. sCPII and uCTX-II, biomarkers of articular degradation and synthesis respectively, were analyze using commercial ELISAs. Subjects performed 3 trials of a forward drop land and a drop vertical jump. Subjects started on a 20 cm step and landed on a force platform (AMTI). PVGRF was analyzed on the surgical side. Quadriceps strength (PKET) was assessed with an isokinetic dynamometer (60°/s). PVGRF and PKET were normalized to body weight (BW). Pearson’s correlation, with and without adjustment for age, was used to analyze associations among variables. RESULTS: Mean (± SD) log concentrations were 2.88 ± 0.19 and 3.32 ± 0.49 ng/mmol for sCPII and uCTX-II respectively; and for uCTXII:CPII was 1.16 ± 0.18. PVGRF was 3.2 BW ± 0.3 and 1.4 BW ± 0.3 for the forward drop land and drop vertical jump tasks, respectively; PKET was 0.92 BW ± 0.2. There were no significant correlations among variables (p≥0.2), except for a trend towards a positive correlation between PKET and uCTXII:sCPII (r = 406, p = .076). CONCLUSSIONS: Biomarkers of type II collagen metabolism were not associated with jump-landing forces. However, higher quadriceps strength may be associated with a shift in articular cartilage metabolism towards degradation.


Listed In: Biomechanics, Orthopedic Research, Physical Therapy, Sports Science