In the following project, we explored the relationships between age, vestibulopathy and stability control, in order to determine the age and vestibulopathy-related effects on stability control, and to establish if a relationship existed between static and dynamic stability task performance. The first study examined the response to repeated trip perturbations of healthy middle aged adults and vestibulopathy patients, the second examined feedforward adaptation of gait in young, middle aged and older adults to a sustained mechanical perturbation and the third examined the relationship between standing balance and recovery following a tripping perturbation in vestibulopathy patients. The results showed that vestibulopathy is related to a diminished ability to control and recover gait stability after an unexpected perturbation, and to a deficient reactive adaptation potential. With ageing, the ability to recalibrate locomotor commands to control stability is preserved, although this recalibration may be slower in old age compared to middle and young age. Given that a decline in vestibular function is seen with increasing age, we suggest that assessment of vestibular function may be necessary when investigating locomotor stability and falls risk in both research and clinical settings. Finally, despite static balance tasks and parameters being commonly used in clinical settings, we did not find a consistent relationship between static and dynamic stability task performance, indicating the importance of dynamic stability tests when assessing falls risk in clinical settings.
Listed In: Biomechanics, Gait, Posturography