Chronic ankle instability (CAI) patients show various sensorimotor deficits, which may be related to the chronic nature of instability. Ultimately, an intervention should focus on deficits which may perpetuate the problem, but an understanding of successful sensorimotor function may best come from those who sprained their ankles with no problematics outcome (copers). PURPOSE: To examine sagittal ankle angles, moments, tibialis anterior and medial gastrocnemius EMG activation during a single-leg maximal vertical side-cutting jump task. METHODS: 66 subjects (M=42, F=24; 22.2±2 yrs, 173.8±8 cm, 71.4±11 kg) consisted of 22 CAI (77.1±15.3% FAAM ADL, 62.5±20.4% FAAM Sports, 4.1±2.8 sprains), 22 Copers (100% FAAM ADL & Sports, 2.0±1.1 sprains), and 22 healthy controls. Subjects performed 10 jumps, consisting of a max vertical jump, landing on a force plate, and transitioning immediately to a side-cutting jump, while the dependent variables were collected during stance. Functional linear models (α=.05) were used to detect mean difference between groups. If functions and associated 95% confidence intervals did not cross the zero, then significant differences existed. RESULTS: Figure 1 shows that copers and AI exhibited up to 2.5° less dorsiflexion angle during 30-75% of stance, relative to controls. While copers exhibited similar neuromechanics to controls in sagittal ankle moment, tibialis anterior and medial gastrocnemius EMG activation, those with CAI demonstrated up to 0.5 Nm/kg less plantarflexion moment, 2.5% less tibialis anterior and 47% less medial gastrocnemius EMG activation. CONCLUSION: Copers show neuromechanics similar to healthy controls at times, and similar to those with CAI at others. Reduced plantarflexion moment and medial gastrocnemius EMG activation suggest that those with CAI may rely more on static stabilizers (e.g., bones) than dynamic stabilizers (e.g., muscles), which could increase impact loads on tibiotalar cartilage surface.
Listed In: Biomechanics, Sports Science