Biomechanics

VERTICAL GROUND REACTION FORCES DURING UNEXPECTED HUMAN SLIPS

Falls due to slippery conditions are among the primary causes of disabling workplace injuries. Despite the extensive amount of human slip studies in the literature, only a handful of studies have reported ground reaction forces at the instant of slip initiation. The purpose of this study was to quantify the vertical ground reaction forces (VGRF) at slip initiation during unexpected human slips across different footwear-contaminant conditions. Forty-seven healthy subjects were unexpectedly exposed to a liquid–contaminant, while the vertical force was measured at the moment that the foot began to start slipping. The average VGRF were between 100 and 300 N and varied significantly across the footwear. These forces were significantly less than the typical forces (400-700 N) applied during slip-resistance measurements. This finding may suggest that available coefficient of friction (ACOF) measurements should use lower force levels in order to achieve higher relevance to the onset of slipping.
Listed In: Biomechanics, Gait


Submaximal Normalizing Methods to Evaluate Load Sharing Changes in Repetitive Upper Extremity Work

The relationship between EMG and muscle force changes with muscle fatigue, making interpretation of load sharing between muscles over time challenging. The purpose of this investigation was to evaluate the efficacy of normalizing EMG data to repeated, static, submaximal exertions to mitigate the fatigue artifact in EMG amplitude. Participants completed simulated repetitive work tasks, in 60-second work cycles, until exhaustion and surface EMG was recorded from 11 muscles. Every 12 minutes, participants completed a series of 4 submaximal reference exertions. Reference exertion EMG data were used in 6 normalizing methods including 1 standard (normalized to initial reference exertion) and 5 novel methods: (i) Fatigue Only, (ii) Linear Model, (iii) Cubic Model, (iv) Points Forward, and (v) Points Forward/Backward. EMG data were normalized to each novel methods and results were compared to the Standard Method. The significant differences between the novel methods and the Standard Method were dependent on the muscle and the number of time points in the analysis. Correlation analysis showed that the predicted cubic model points correlated better to the actual data points than the linear predicted values. This novel method to create “fatigue debiased” ratios may better reflect the changing muscular loads during repetitive work. This method was evaluated with a novel data set examining the effects of repetitive shoulder exertions, in multiple axes, on load sharing in the shoulder over time. The normalizing method was effective at distinguishing between the effects of fatigue artifact on EMG amplitude and load sharing between muscles over time.
Listed In: Biomechanics


EFFECTS OF STRENGTH AND PROPRIOCEPTIVE EXERCISES ON WALKING ENERGETIC PATTERNS IN CHRONIC ANKLE INSTABILITY

Chronic ankle instability (CAI) patients often exhibit altered walking mechanics, due to strength and proprioceptive deficits associated with CAI. Reduced strength and proprioception function may alter walking energetic patterns, by reducing energy absorption and generation capability. It is unclear whether strength and proprioceptive training can affect walking energetics for CAI patients. PURPOSE: To examine the effect of a 6-week ankle and hip rehab program on ankle, knee, and hip joint energetic patterns during walking in CAI patients. METHODS: 15 CAI patients (23 ± 2 yrs, 178 ± 8 cm, 76 ± 9 kg, 83 ± 7% FAAM ADL, 56 ± 10% FAAM Sports, 3.6 ± 1.1 MAII, 4.7 ± 2.0 ankle sprains) performed ankle and hip strength and proprioceptive exercises (i.e., theraband, wobble board, etc.) 3 times per week, for 6 weeks (rehab group). 14 CAI patients (22 ± 2 yrs, 177 ± 9 cm, 75 ± 12 kg, 81 ± 9% FAAM ADL, 56 ± 12% FAAM Sports, 3.4 ± 1.2 MAII, 5.9 ± 3.3 sprains) performed no rehab exercises (control group). We measured ankle, knee, and hip joint power during walking for all patients before and after 6 week duration. Functional statistics (α = 0.05) were used to evaluate the influence of the rehab exercises on joint power for both groups across the entire stance phase of walking. RESULTS: The rehab intervention resulted in up to 0.07 W/kg more positive ankle power (concentric) between 19 and 26% of stance and up to 0.06 W/kg more positive knee power (concentric) between 40 and 48% of stance. No changes were detected in hip joint power during the stance phase of walking. CONCLUSION: Strength and proprioceptive training resulted in an improved gait energetic efficiency via increased ankle and knee power generation during mid-stance. As greater muscular strength can lead to an increase in power absorption and generation, the intervention focusing on strength could be beneficial in improving walking energetics in a CAI population.
Listed In: Biomechanics, Gait


An Assessment of a novel approach for determining the player kinematics in elite rugby union players

Rugby is intrinsically an impact sport which results in concussions being a frequent injury within the game. Repeated concussion is linked to early-onset dementia and depression, and the rules for limiting repeated concussion are an ongoing controversy. Therefore a greater understanding of the dynamics of head impacts in rugby and the mechanism of concussion is required. Accordingly, this study focuses on assessing the use of Model Based Image Matching (MBIM) and multi-camera view video for measuring six degree of freedom head kinematics during an impact event in rugby union. The matching is performed on video evidence using 3-D animation software Poser 4. The surroundings are built in the virtual environment based on the real dimensions of the sport field. A skeleton model is then used to fit the player’s anthropometry for each video frame thus allowing player kinematics to be measured. The results from this initial study suggest that the MBIM method can be applied to head impact cases in rugby union. The head kinematics results from this case are similar to those reported in literature. The MBIM method should be applied to a number of head impact cases to establish thresholds for concussion injuries in rugby. The data gained from the MBIM method can allow for more reliable kinematic data to be inputted into finite element analysis and rigid body simulations of concussion impacts. This can allow multi-axis force measurements to be measured within the brain and neck. This can ultimately lead to an improvement in concussion injury prevention and management.
Listed In: Biomechanical Engineering, Biomechanics, Mechanical Engineering, Sports Science


Characterising gait over different walking speeds in patients with bilateral vestibular loss: preliminary results

Bilateral vestibular hypofunction (BVH) is a bilateral reduction or loss of vestibular function resulting in balance deficits and an increased falls risk. As part of a larger study, this experiment aimed to assess how spatiotemporal gait characteristics and their variability change across different walking speeds in patients with BVH. Nine patients (55±15y) with BVH have participated thus far. Experiments were conducted on the CAREN Extended system (Motekforce Link, Amsterdam, The Netherlands). Following multiple familiarisation trials, the participants completed five recorded two minute walking bouts at different speeds (0.6m/s, 0.8m/s, 1.0m/s, 1.2m/s and 1.4m/s). 60 strides per speed were analysed and the means, standard deviations and coefficients of variation (CV) of stride length and time, step length and width, double support time and swing phase toe clearance were calculated. Stride length, step length and toe clearance all increased with increases in walking speed (P<0.001). Stride and double support time decreased with increased walking speed (P<0.0001). No walking speed effect was found for step width (P=0.25). Significant reductions in variability with increases in walking speed were found for stride length, stride time, step length, toe clearance (P<0.01) and double support time (P<0.05). A significant increase in step width variability was observed with increases in walking speed (P=0.0033). These preliminary data suggest that while anteroposterior gait characteristics may improve in terms or variability with increases in walking speed in these patients, mediolateral motions may become more variable, which may have implications for mediolateral stability and falls risk in patients with BVH.
Listed In: Biomechanics, Gait, Neuroscience


The relationships between physical capacity and biomechanical plasticity in old adults during level and incline walking

Old versus young adults exhibit increased hip and decreased ankle joint mechanical output during level and incline walking. This distal-to-proximal redistribution of joint torques and powers is now a well-established age-related gait adaptation and has been termed biomechanical plasticity. The effect of physical capacity, which varies greatly in old adults, on this gait adaptation remains unclear. For example, high capacity old adults (i.e. those with fast walking speeds) might either retain a more youthful gait strategy or adopt larger magnitudes of plasticity in order to walk well. The purpose of this study was to quantify the relationships between physical capacity and biomechanical plasticity in old adults during level and incline walking. We conducted 3D gait analyses on 32 old adults (>70 yrs) as they walked over level ground and up a 10° incline at self-selected speeds. We used motion capture (Qualisys AB) and force platforms (AMTI) to collect kinematic and ground reaction force data, respectively. To measure physical capacity, we used the SF-36 Physical Component score and to define biomechanical plasticity we created ratios of hip extensor to ankle plantarflexor peak torques, angular impulses, peak positive powers, and work. We conducted correlation analyses between SF-36 PC scores and the biomechanical plasticity ratios. Positive relationships existed between SF-36 PC scores and all biomechanical plasticity ratios during level walking. Similar results were observed during incline walking, however only three of these four relationships reached statistical significance. Our results suggest that old adults of higher physical capacities exhibit larger magnitudes of biomechanical plasticity.
Listed In: Biomechanics, Gait


MUSCULAR FATIGUE INFLUENCES MOTOR SYNERGIES DURING PUSH-UPS

Objectives: The conventional push-up is a popular exercise used by the American College of Sports Medicine to test participant muscular endurance. Push-ups require changes in the ground reaction forces generated at each point of contact with the ground (all four extremities) which are achieved through muscular contractions. Although this exercise is common, the motor control mechanisms used in this motion are relatively unknown. We investigated whether humans adjust individual limb forces (push-up synergies) as they reached volitional fatigue and evaluated the hypothesis that muscular fatigue influences synergistic actions between the forces produced at the hand contact points. Approach: Twenty-one volunteers participated in a single motion capture trial where they performed as many push-ups as possible, stopping at self-determined failure. Push-ups were completed to a controlled three-beat rhythm (down, up, hold plank) at a rate of 24 repetitions per minute. Participants were instructed to arrange themselves in a plank position with each extremity within the bounds of an embedded force platform and analog data was collected at a frequency of 1000Hz. An index of synergy, defined as correlations between vertical forces, was calculated for every downward and upward motion within the push-up trial. Findings: Between-arm vertical forces were positively correlated during upward and downward motion. Positive correlation indicates that limbs worked together to produce increases or decreases needed for center of mass movement. Upward limb synergy significantly (p ≤ 0.00) decreased as participants neared volitional fatigue while downward limb synergy did not significantly change (p = 0.77). Conclusions: We found that muscular fatigue affected the synergistic actions between limbs in upward motion but not in downward motion. After muscular fatigue, between arm synergy was reduced only during concentric muscle contractions. Public Health Significance: Better understanding the synergistic changes produced by fatigue could be used to evaluate or better understand control changes behind pathologic gait or movement adaptations.
Listed In: Biomechanical Engineering, Biomechanics, Neuroscience


BIOMECHANICAL DIFFERENCES OF DISSATISFIED TOTAL KNEE REPLACEMENT PATIENTS DURING STAIR DESCENT

Stair negotiation is one of the more difficult daily activities reported by total knee replacement (TKR) patients. Dissatisfied TKR patients have reported increased difficulty with stair negotiation, however it is unknown what the underlying mechanical issues are for this population. Therefore, the purpose of this research was to examine the knee joint biomechanics of dissatisfied TKR patients during stair descent. Nine dissatisfied TKR patients (34.6±14.3 months from surgery), 15 satisfied TKR patients (29.3±12.8 months from surgery), and 15 healthy participants performed stair descent trials on a five-step instrumented staircase at a preferred gait speed. The dissatisfied group showed lower knee extension and abduction moments in their replaced limb. The 2nd peak vertical ground reaction force (VGRF) and 1st and 2nd peak knee internal rotation moments showed lower moments for replaced limbs compared to non-replaced limbs. First peak VGRF was reduced for dissatisfied group compared to satisfied and healthy groups. The dissatisfied TKR group had significantly increased pain levels on their replaced limb compared to all other groups and limbs. The dissatisfied group had reduced gait speed compared to the satisfied and healthy groups. Increased pain levels lead to reduced descent speed and peak loading-response and pushoff sagittal plane knee joint moments in dissatisfied total knee replacement patients during stair descent. This creates an asymmetry in the extension loading response moment for the dissatisfied group, with the non-replaced limb showing increased joint moments whereas the satisfied and healthy groups do not have that imbalance.
Listed In: Biomechanics


The Effect of a Raised Surface on Frontal Plane Knee Loading and Muscle Activation During a Sidecut in Recreational Female Softball Players

Collegiate softball has become increasingly popular since the passage of Title IX. As with any sport, injuries are a common occurrence. Interestingly, the base runner is at the highest risk of injury, and rounding the base, specifically, has resulted in approximately 187 game-day injuries. Rounding the base involves planting the right foot on a raised surface and cutting to the left, a dynamic movement often associated with noncontact ACL injuries. Frontal plane loading and unbalanced quadriceps-to-hamstring co-contraction indices (Q:H CCI) have been associated with increasing the likelihood of noncontact ACL injuries occurring. Neuromuscular abnormalities pre- and post-contact have also been suggested to increase the risk of injury. To date, no study has analyzed the effect of rounding a base on noncontact ACL injury risk factors in softball players. Nine recreationally active females completed two base conditions. The first simulated rounding a base with no base on the force platform (NB), and the second simulated rounding a base with a base on the force platform (WB). Three-dimensional motion capture, one force platform, and electromyography were utilized. Results indicated the WB condition reduced the risk of noncontact ACL injury by decreasing frontal plane loading. Movement patterns at the ankle and abnormal foot strikes may provide a better explanation for why noncontact ACL injuries occur while rounding first base. Post-contact Q:H CCI was significantly greater than pre-contact, indicating significantly greater quadriceps activity post-contact. Neuromuscular training could potentially reduce the load applied to the ACL and decrease the risk of injury.
Listed In: Biomechanics, Sports Science


Effects of Wide Step Width on Stair Ascent Knee Kinetics in Obese Participants

Purpose: An increased likelihood of developing obesity-related knee osteoarthritis may be associated with increased peak internal knee abduction moments. Increases in step width may act to reduce this moment. The purpose of this study was to determine the effects of increased step width on knee biomechanics during stair ascent of healthy-weight and obese participants. Methods: Participants ascended stairs while walking at their preferred speed in two different step width conditions – preferred and wide. A 2 x 2 (group x condition) mixed model analysis of variance (ANOVA) was performed to analyze differences between groups and conditions (p<0.05). Results: Increased step width decreased the loading-response peak vertical ground reaction force (GRF), loading-response knee abduction moment, knee extension ROM, and knee abduction ROM in both groups. However, it also increased loading and push-off peak mediolateral GRF, and peak knee abduction angle in both groups. Obese participants experienced a disproportionate increase in loading and push-off peak mediolateral GRF, and peak knee abduction angle compared to healthy. Conclusion: Increased SW successfully decreased loading-response peak knee abduction moment. Implications of this finding are that increased SW may decrease likelihood of developing medial compartment knee osteoarthritis. This study shows that this gait modification affects obese and healthy-weight differently, and the influence of body mass on knee biomechanics.


Listed In: Biomechanics