Biomechanics

Quantifying stair gait stability and plantar pressure in an aging community, with modifications to insoles and lighting

Introduction: Stair gait is an activity performed daily. Inherently falls during stair gait continue to be a concern especially for older adults 65 years +. Recently falls have become the most common cause of injury-related deaths in individuals over the age of 75 y.o. Stair descent falls account for 75% of stair falls and also present a greater injury severity. Poor shoes or insoles and lighting condition can contribute to an increased risk of falls during stair locomotion. Stability can be measured using the COM-BOS ‘stability margin’ relationship. Center of pressure (COP), another stability measure,can be calculated from a multi-axis force-plate system. As well, plantar pressure is an important indicator of gait pattern efficiency. Aim: To identify aspects of stair gait that increase the risk of falls. By measuring the COM-BOS ‘stability margin’, the COP and plantar pressure patterns of individuals during stair gait, while modifying insoles and lighting. Methods: Young and older adults will ascend and descend a 4 level staircase, with two imbedded AMTI-force platforms in varying lighting condition (low, normal). Participants will be fitted with standardized footwear with Medi-logic insoles placed under varying hardnesses of insoles. An Optotrak motion capture system will record 12 IRED markers placed on the individual to determine the COM trajectory and BOS of location. Hypothesis: Partipants should demonstrate a greater lateral displacement in the single support phase during dim lighting as opposed to normal lighting. The stability of older adults will be compromised with alteration to the insoles (soft and hard).


Listed In: Biomechanics, Gait, Other


Can We Develop a Biomechanical Functional Score to Quantify the Joint Mechanics of THA Patients?

THA is a reliable method to improve the quality of life in osteoarthritis patients. However, it is still unclear whether it would lead to improved functional mobility. The purpose was to develop a biomechanical functional score to quantify the joint mechanics of THA patients compared to healthy participants (CTRL). Twenty-four THA patients and 12 CTRL (age-, sex-, and BMI-matched) participants were recruited and underwent motion analysis for different ADLs tasks prior and nine months after THA. Three-dimensional joint kinematics and ground reaction forces were collected and five kinematic and six kinetic variables were included in the analysis. The normalized root-mean-square-deviation (nRMSD) was calculated between the THA and the CTRL groups for both pre- and post-op conditions: nRMSD= √((∑_(t=1)^n(x_(1,t)- y_(1,t))^2)/n)⁄(x_max-x_min). Kinematics and kinetics improvement scores (KMIS and KNIS) were calculated to estimate pre/post-op differences: KMIS=∑_(i=1)^n〖〖(KM〗_(pre/ctrl i)-〖KM〗_(post/ctrl i))〗; KNIS=∑_(i=1)^n〖〖(KN〗_(pre/ctrl i)- 〖KN〗_(post/ctrl i))〗. THA patients experienced post-op improvements, with kinetics variables closely resembling the CTRLs, especially on hip and knee power production. Total improvement scores showed that THA experienced greater improvements during a squat task and this can be a practical approach to evaluate the change in biomechanical function and highlight small improvements that may go unnoticed with traditional statistical analysis.
Listed In: Biomechanics, Orthopedic Research


Could lowering the tackle height law to below the chest in rugby union reduce long-term brain degeneration?

The tackle height law in rugby union has been an area of concern for many years. It is currently set at the line of the ball carrier’s shoulder. The goal of this study is to use Model-Based Image-Matching (MBIM) and human volunteer tackles in a marker-based 3D motion analysis laboratory to examine the severity of a legal tackle to the shoulder/chest of the ball carrier (with no head contact) and the effect of tackles above and below the chest on ball carrier inertial head kinematics, respectively. From the real-world tackles, the estimated ball carrier peak resultant change in head angular velocity was 30.4 rad/s (23.1 rad/s, 14.0 rad/s and 21.8 rad/s in the coronal, sagittal and transverse direction, respectively). In the staged tackles, the median peak resultant head linear and angular acceleration and change in head angular velocity values for tackles above the chest were greater than for below the chest. The results support the proposition of lowering the current tackle height law. Due to the real-world tackle (MBIM), the ball carrier head kinematics indicated a greater than 75% chance of sustaining a concussion, based on the literature. This was the case even though no contact was made with the ball carrier’s head. Therefore, repeatedly engaging in this type of legal tackle may be detrimental for long-term brain health. However, by lowering the tackle height law to below the chest, ball carrier inertial head kinematics can be reduced significantly, thus reducing the repetitive loading placed on the brain.
Listed In: Biomechanical Engineering, Biomechanics, Sports Science


Kinetics and kinematics of the lower extremity during performance of two typical Tai Chi movements by the elders

Tai Chi (TC) has the rehabilitative potential to prevent falls in the elderly, however it is unclear how TC training improves postural control capacity. Fifteen male participants with more than 4 years of TC experience were asked to perform two TC movements, the “Repulse Monkey (RM)” and “Wave-hands in clouds (WHIC).” Three-dimensional (3-D) temporospatial, kinematic and kinetic data was collected using VICON motion analysis system with 10 infrared cameras and 4 force plates. Stride width, step length, step width, single- and double-support times, center of mass (COM) displacement, peak joint angles, range of motion, peak joint moments, time to peak moment, and ground reaction force (GRF) were analyzed. The differences in the measurements of the two TC movements were compared with walking using two-way ANOVA analysis. Compared with walking kinematics, both TC movements spent less time in single-support; RM and WHIC had larger mediolateral and vertical displacement of the COM. Compared with walking kinetics, both TC movements generated significantly smaller peak ground reaction forces in all directions, except the anterior; larger hip extension, adduction and internal rotational moments, knee adduction/abduction and internal rotation moments and eversion/inversion and external/internal moments of ankle–foot; and longer peak moment generation time for hip extension, adduction and internal rotation, knee extension and ankle dorsiflexion and inversion. The slow, gentle stepping-action and loading patterns that are consistent with the mechanical behavior of biological tissues. These two TC movements would be suitable training to help strengthen the lower extremities and prevent falls in the elderly.
Listed In: Biomechanics, Gait, Sports Science


Anticipation alters lower-limb biomechanics during drop-jump landings

ACL injury mechanisms are commonly determined from evidence gathered during highly controlled lab-based activities. However, many non-contact ACL ruptures occur following a reaction to an external stimulus, when athletes are unable to pre-plan their movement strategy1. The purpose of this study was to determine if unanticipated drop-jump landing altered lower-limb biomechanics. Ten participants performed two counter-balanced single-leg drop-jump landing conditions (anticipated and unanticipated). Unanticipated landings were conducted by randomly displaying either a left or right arrow immediately following jump takeoff. The visual cue was triggered by the participant making contact with a force platform, set at a threshold of 10N. Three-dimensional kinematic and kinetic data for the ankle, knee and hip were time-normalized over the jumping and landing phase and with-in participant averaged over the successful trials. Paired sample t-tests, using Statistical Parametric Mapping, evaluated between condition differences over the jumping and landing phases (α = 0.05). Participants landed with significantly greater hip abduction (p=0.004) during the unanticipated condition over the entire landing phase (0-100%). Participants also landed with significantly less hip external rotation (p=0.048) over the final 17% of the landing phase. Although no differences were identified at the knee joint, participants landed with greater hip abduction and less external rotation when the movement was unaticipated. Given that proximal factors play a contributing role towards controling knee mechanics, the altered hip position could be a compensatory strategy to limit knee abduction and reduce ACL injury risk during unanticipated tasks2. 1. Olsen et al. AJSM 2004;32(4):1002-1012 2. Powers JOSPT 2010;40(2):42-51
Listed In: Biomechanics


Gait variability in patients with COPD during a self-paced 6-minute walk test

Patients with chronic obstructive pulmonary disease (COPD) have an increased fall risk [1] and demonstrate gait deficits [2,3]. Gait variability has been associated with increased fall risk in the aging population [4]. However, studies reporting gait variability in COPD are scarce. Therefore, we aim to assess gait variability in patients with COPD during the 6-minute walk test (6MWT). Eighty patients with COPD (62±7yrs; FEV1:56±19%pred.) and 39 healthy subjects (62±6yrs; FEV1:119±17%pred.) performed two self-paced 6MWTs while kinematic parameters were recorded (100Hz, Vicon). The amount (coefficient of variation; CoV) and structure (sample entropy; SE) of variability of stride time, stride length and step width, and local divergence exponent (LDE) of the centre of mass velocity (CoMv) in three directions were computed. The sub-analysis accounted for gait speed influences on gait variability between groups. Stride time was longer (MD:0.13s, p<0.001) and stride length was smaller (MD:-0.30 m, p<0.001) in COPD. CoV for stride length was increased (MD:1.8%, p<0.001) and stride length SE was lower in COPD (MD:0.21, p<0.001). LDE for CoMv differed in vertical (MD: -0.12, p=0.001) and anteroposterior direction (MD: 0.10, p=0.017). The CoV for stride length remained higher in COPD (MD:1.0%, p=0.003) and stride length SE remained lower in COPD (MD:-0.12, p=0.011), after the sub-analysis of 14 patients with COPD and 14 healthy subjects with comparable walking speeds (MD:-0.02m/s, p=0.588). Patients with COPD demonstrate alterations in the amount and structure of variability in stride length, indicating alterations in the control of stride length variability patterns.
Listed In: Biomechanics, Gait


The Effect of 3D Thigh-Calf Contact on External Knee Forces and Moments in Six High Knee Flexion Movements

When performing high knee flexion movements (>120º), thigh-calf (TC) and heel-gluteal (HG) structures come into contact and transmit force between segments. Previous work has only assessed the effect of these forces on net external knee joint forces and moments in the sagittal plane. Therefore, the purpose of this study was to quantify the effect of incorporating the 3D location and orientation of TC and HG force vectors on external forces and moments acting on the knee. Sixteen participants (8 M/F) completed five repetitions of six high-flexion movements. Kinematics, kinetics, and pressure distribution (of TC and HG contact) were measured from the right lower limb. Inverse dynamics were calculated with and without TC and HG force, to determine the change in magnitude. During high knee flexion movements, there was a significant reduction in AP forces (~50%) and F/E moments (~27%) as a result of considering contact between lower limb segments. Novel to this study was the ability to account for the 3D force vector and CoF location of TC and HG by tracking the motion of the pressure mat allowing the effect on frontal plane moments to be determined. There was a significant increase in the Ab/Ad moment (~60% in two movements) which is a known risk factor for knee osteoarthritis development. These results will improve the biofidelity of future high flexion musculoskeletal models of the knee. Future work is required to determine if findings from this young and healthy population translates to occupational or individuals that habitually kneel.
Listed In: Biomechanics


INFLUENCE OF AGE AND GENDER ON INTERLIMB ASYMMETRY IN RECREATIONAL RUNNERS

INTRODUCTION:Previous studies have reported that men and women demonstrate distinctly different biomechanics during running and that older runners use a variety of biomechanical adaptations compared with younger runners. It is hypothesized that excessive asymmetry due to biomechanical and anatomical abnormalities contributes to increased risk of injuries, however it is still unclear how age and gender might impact this.METHODS: A cross sectional study was employed and healthy recreational runners were categorized into four groups based on age and gender.Two-way multivariate analysis of variance was performed with age and gender as factors and Symmetry Angle values for peak hip adduction angle (HA), peak knee adduction moment (KAM), peak knee flexion angle (KF), and peak vertical ground reaction force (VGRF) were used as the dependent variables. RESULTS: Overall, gender had a significant effect on HA asymmetry (p=0.02) and both gender and age showed a significant interaction effect on KAM asymmetry (p=0.04).CONCLUSIONS:This study suggests that interlimb asymmetry in running gait for KAM and HA also differs with aging and gender.Understanding age and gender related adaptations in interlimb asymmetry will help improve running performance and develop programs aimed at reducing injury rates.
Listed In: Biomechanics, Gait, Orthopedic Research


Association of isometric hip and ankle strength with frontal plane kinetics in females during running

Frontal plane mechanics have been associated with running-related injuries such as patellofemoral pain. Strengthening and gait retraining programs aimed at reducing hip adduction during running have been shown to be effective at alleviating symptoms, however evidence of their effect on running kinematics is equivocal. It is possible that such programs exert their benefits through altering kinetics rather than kinematics in the frontal plane during running. Further, the contributions of the ankle to frontal plane mechanics have not been well studied. PURPOSE: To determine if hip and ankle strength are associated with frontal plane kinetics in female runners. METHODS: 64 healthy women running at least 16km per week participated in this study. Isometric hip abduction and ankle inversion strength were measured using a handheld dynamometer. 3D gait analysis was conducted as participants ran on an instrumented treadmill at 2.7 m/s. Participants were ranked in order of isometric strength of both the hip and ankle, and divided into tertiles of high, medium and low strength. 2-way MANOVA was used to determine the relationship between strength and peak moment, positive work and negative work in the frontal plane of the hip and the ankle. Tukey post-hoc tests were conducted where applicable (α=0.05). RESULTS: There was no significant interaction effect, or main effect of hip strength. There was a significant main effect of ankle strength on frontal plane kinetics (p=0.024). Specifically, the strong ankle group compared to the weak ankle group had significantly greater magnitude of peak ankle inversion moment (0.95(0.32) vs 0.68(0.22) Nm/kg, p=0.033), hip abduction moment (-2.78(1.02) vs -1.88(0.24) Nm/kg, p=0.002) and hip frontal plane positive work (0.27(0.19) vs. 0.13(0.03) W/kg, p=0.006). CONCLUSION: Isometric ankle but not hip strength is associated with kinetics in the frontal plane during running in females. Thus ankle strength should not be overlooked in clinical evaluation and treatment of runners.
Listed In: Biomechanics, Gait, Physical Therapy, Sports Science


QUADRICEPS IMPAIRMENT IS ASSOCIATED WITH KNEE MECHANICS DURING GAIT IN OBESE YOUNG ADULTS

Background: Approximately 33% of the adult population in the United States is considered obese (28), which increases the risk of comorbidities such as osteoarthritis (OA) (34). The most notable feature of OA is the loss of articular cartilage within a joint, resulting in pain and physical disability (3). The association between obesity and OA is due to a combination of mechanical and metabolic factors (3). Greater weight from obesity adds stress to articular cartilage in weight-bearing joints, and contributes to cartilage breakdown (21). Previous studies have demonstrated an association between gait biomechanics and OA in older populations (15, 25), but data are lacking in young obese individuals without OA. Young obese compared to normal weight adults have lesser knee flexion excursion (KFE) (31), and greater vertical loading rates (vLR) during gait (30, 31). However, the source of aberrant gait mechanics in obese adults is unclear, and could be related to impaired shock attenuation from weakened musculature in the lower extremity. Obese young adults have deficits in quadriceps function after normalizing to fat-free mass, and walk slower compared to normal weight young adults. RTD was moderately associated with KEM at habitual gait speed, and KEM was also lesser in obese compared to normal weight adults. The lesser KEM in the obese group suggests that obese young adults walk with a quadriceps avoidance gait, which may contribute to knee OA development. Exercise interventions targeting RTD may be useful for improving walking mechanics in obese adults.
Listed In: Biomechanics, Gait, Orthopedic Research