The Force and Motion Foundation is a 501(c)(3) non-profit organization whose purpose is to support students in fields related to multi-axis force measurement and testing. Fully funded by AMTI, The Foundation awards travel grants to aid promising graduate students on their paths to becoming the scientific leaders of tomorrow. The Foundation also serves as creator and curator of the Virtual Poster Session, an international resource for information exchange and networking within the academic community.


Just click the orange tabs to learn more about all the foundation has to offer...


Since its inception, The Foundation has granted $220,000.00 in academic scholarships and $119,000.00 in travel awards





Please join us in congratulating the 2nd Quarter Travel Award recipients:
Noelle Tuttle - Texas Womens University,  Bruno Bedo - Univ. Sao Palo Br, Erika Pliner - University of Pittsburgh, Jasper Verheul - Liverpool John Moores University, Gina DiGiacomo - University of Connecticut, Giorgos Krikelis - Loughborough University, Emily Fonke - Elon University, Erik Kowalski - University of Ottawa, Farahnaz Fallahtafti - University of Nebraska at Omaha

Submit your Scientific Poster for 2019 3rd Quarter $1000 Academic Travel Scholarships now.

Recent Posters

The objective of this study was to investigate the effect of induced stress on the performance of each task during high cognitive load situations(HCLS). We hypothesized that induced stress leads to performance decrements during HCLS.
In this study, the HCLS included standing while completing a secondary task(wire maze). The wire maze was composed of a metal wire path(maze) and a single ring, held in one hand that was moved over the maze without contacting the maze itself. Stress was induced through a loud buzzer when the ring contacted the maze. Participants were asked to randomly stand 1)quietly, or while completing the wire maze 2)with or 3)without the buzzer. Trials were three-minute long.
A sample of 18 healthy young participants, (24.76±3.56 years) were randomly recruited.
Perceived stress was obtained after each trial. Regularity of ground-reaction-force (GRF) in anterior-posterior and medial-lateral directions as well as wire maze error (ring-to-path contact) were calculated as primary and secondary task performance.
GRF was more irregular during quietly standing compared to HCLS with and without the buzzer in both the AP and ML directions(p=0.02, p=0.001, respectively in anterior-posterior,η^2=0.28)&(p=0.004, p<0.0001, respectively in medial-lateral, η^2=0.39). Perceived stress was significantly lower during quietly standing compared to HCLS with(p=0.001, η^2=0.45) and without buzzer(p=0.007) conditions. Overall, the hypothesis was supported partially; during the most stressful HCLS, the high level of perceived stress coincided with less wire maze errors(P<0.0001, d= 0.72).
Identifying the strategies underlying task prioritization can help clinicians design appropriate interventions to challenge patients appropriately to improve performance during HCLS.

Biomechanical studies have tried to assess the impact of the surgical approach on gait characteristics and recovery after total hip arthroplasty (THA). Some studies which used discrete analyses have shown that some surgical approaches provide better hip joint function after one year post-surgery, but several studies did not find any differences. The goal of this study was to compare hip biomechanics during gait using statistical parametric mapping (SPM) in patients who underwent THA with either a lateral (LAT), anterior (ANT), or posterior (POS) approach. Forty-five patients underwent unilateral THA with either a LAT, ANT, or approach, and were compared with 15 healthy controls (CTRL). All patients underwent biomechanical gait analysis approximately 9 months following surgery. Hip biomechanics were compared between groups throughout the entire gait cycle using a One-Way ANOVA SPM. Alpha was set to 0.05 and Bonferroni post hoc comparisons were completed. The POS group had a significantly lower hip flexion moment just prior to toe-off compared to the ANT and CTRL groups. The ANT group had significantly lower hip abduction moment for most of the stance phase compared to the LAT and CTRL groups. The POS group had a significantly lower hip abduction moment compared to the LAT and CTRL groups. These findings tend to contradict existing literature. Future studies should complete both pre- and post-operative assessments with a larger cohort in each group, as well as standardize the implants as much as possible to determine if observed differences are due to the approach and no other factors.

Injury could lead to impaired postural stability which is commonly assessed during return-to-sport rehabilitation. The Dynamic Postural Stability Index (DPSI) estimates variability in tri-axial ground reaction forces. DPSI is higher in injured runners and predicts performance in soccer players. DPSI has also been related to ankle range of motion (ROM) and strength in military personnel. PURPOSE: To explore relationship between previous injury, ankle ROM and strength with DPSI in collegiate runners. METHODS: Twenty-seven Division I collegiate cross country athletes (19.8±1.3 years) participated. Athletes jumped over a hurdle on to an AMTI force plate and landed on a single leg for DPSI estimation. Three trials were performed bilaterally. Ankle ROM was assessed via active dorsiflexion and gastrocnemius length measurement. Ankle and hip strength were measured using a handheld dynamometer. An independent samples t-test was used to compare DPSI between injured (IG – those injured in the past 3 years) and uninjured (UG) groups. Pearson’s correlation coefficients were determined between DPSI and other variables. RESULTS: No significant difference was found for DPSI on left (IG: 0.30±0.03 vs. UG: 0.32±0.04) and right (IG: 0.30± 0.03 vs. UG: 0.31±0.03) sides. There was a significant moderate negative correlation between dorsiflexion ROM and DPSI (right side r= -0.605, p= 0.001; left side r= -0.452, p= 0.001). There were no correlations between strength and DPSI except for right inversion strength and right DPSI (r= 0.446, p=0.020). CONCLUSION: DPSI seems to be influenced to a greater extent by ankle dorsiflexion than strength or previous injury in a collegiate runners.

The Force and Motion Foundation Updates...



The Force and Motion Foundation 


Submit your 2019  3rd Quarter Scientific Poster NOW for the F&M $1000 Travel Scholarship! 


*F & M Foundation allows for one submission per year, per individual, with a total maximum award to be granted per individual of $2000 over their lifetime, (2 submissions)


Please check back in the future for information on more scholarship offers