Virtual Poster Session

Welcome to the Virtual Poster Session, a new and powerful tool for networking and information exchange. Here you can share your work, search though the poster library, and start a dialogue with others in your field. Each uploaded poster that pertains to force measurement and testing can currently be used to apply for an academic travel scholarship; please see the Scholarships page for application details and deadlines.

Sort By: Most Recent | Most Popular View All
Name: machtn83

Assessing the lower limb properties in-situ is of a major interest for analyzing the athletic performance. From a physical point of view, the lower limb could be modeled as single linear spring which supports the whole body mass. The main mechanical parameter studied when using this spring-mass-model is the leg-spring stiffness (k). In laboratory conditions, the movements are assessed using a force plate (Meth1) which measures the ground reaction force (GRF), and a motion capture system which could estimate the displacement of the centre of mass (CoM). In this way, k is calculated as shown in equation (2).More recent methods allow to calculate k in field conditions by using either foot switches (Meth2) or accelerometry-based instruments (Meth3) which are both wireless devices. The associated calculated methods assume that force-time signal is a sine wave, described by the equation (3) with equation (4) (CT: contact time; FT: flight time). In these cases, the kinematic measurement (CoM) could be calculated either by a mathematical approach (Eq.(5)) (meth2), or by double integrating the acceleration (meth3) in order to calculate k.Thanks to their transportability, the methods 2 and 3 offer not only the possibility to assess the lower limb movements, but also, to objectively follow up the athletic abilities (performance, reactivity, force and power, stiffness) in-situ.


Name: hbennet4

Higher ACL injury frequencies have been reported on synthetic turfs compared to natural turfs. However, assessments of cleat stud type on lower extremity biomechanics worn on these surfaces are limited. The purpose of this study was to examine the knee biomechanics of a non-studded running shoe (RS), a football shoe with natural turf studs (NTS), and with synthetic turf studs (STS) during single-leg land-cut and 180°-cut tasks on synthetic turf. Fourteen recreational football players performed five trials of 180°-cut and land-cut tasks in the three shoe conditions on an infilled synthetic turf. Knee biomechanics were analyzed using a 2x3 (task x shoe) repeated measures ANOVA followed by post-hoc paired samples t-tests (p<0.05). For the 180° cut, 1st peak internal knee adduction moments were increased in RS and STS compared to NTS (Table) and in 1st peak knee extensor moments in RS compared NTS and STS. The peak negative knee extensor power was increased in RS compared to NTS and STS. The land-cut had significantly greater peak extensor moments, sagittal plane powers, and abduction angles, and significantly lower adduction moments compared to the 180°-cut. As expected, the land-cut movement involved increased power absorption, power generation, and extensor moment compared to the 180°-cut. However, shoe effects lie only in the 180°-cut. Decreased medial ground reaction force1, knee adduction and extensor moments in NTS suggest the knee may be in a safer environment using these studs during cutting maneuvers. Reduced knee adduction moments in NTS could have implications in non-contact ACL injury.


Name: kyomotom

We investigated the production of free radicals on a poly(ether-ether-ketone) (PEEK) substrate under ultraviolet (UV) irradiation. The amount of the ketyl radicals produced from the benzophenone (BP) units in the PEEK molecular structure initially increased rapidly and then became almost constant. Our observations revealed that the BP units in PEEK acted as photoinitiators, and that it was possible to use them to control the graft polymerization of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC). This “self-initiated surface graft polymerization” method is very convenient in the absence of external photoinitiator. We also investigated the effects of the monomer concentration and UV irradiation time on the extent of the grafted PMPC layer. Furthermore, as an application to improving the durability of artificial hips, we demonstrated the nanometer-scale photoinduced grafting of PMPC onto PEEK and carbon fiber-reinforced PEEK (CFR-PEEK) orthopedic bearing surfaces and interfaces. A variety of test revealed significant improvements in the water wettability, frictional properties, and wear resistance of the surfaces and interfaces.


Name: chrismccrum

Patients with unilateral peripheral vestibular disorder (UPVD) have diminished postural stability and therefore the aim of this study was to examine the contribution of multiple sensory systems to postural control in UPVD. Seventeen adults with UPVD and 17 healthy controls participated in this study. Centre of pressure (COP) trajectories were assessed using a force plate during six standing tasks: Forwards and backwards leaning, and standing with and without Achilles tendon vibration, each with eyes open and eyes closed. Postural stability was evaluated over 30s by means of: total COP excursion distance (COPPath) and the distances between the most anterior and posterior points of the COPPath and the anterior and posterior anatomical boundaries of the base of support (COPAmin and COPPmin). In addition, the corrected COPAmin and COPPmin was assessed by taking the corrected base of support boundaries into account using the anterior and posterior COP data from the leaning tasks. UPVD patients showed a tendency for smaller limits of stability during the leaning tasks in both directions. Subject group and task condition effects were found (P<0.05) for COPPath, (i.e. higher values for patients compared to controls). UPVD patients showed lower (P<0.05) COPPmin values compared to the control group for all conditions (more pronounced with the corrected COPPmin). Disturbance of the visual system alone lead to a distinct postural backward sway in both subject groups which became significantly more pronounced in combination with Achilles tendon vibration. The individual limits of stability should be considered in future research when conducting posturographic measurements.


Name: wkorgan

Following amputation, an amputee must learn to walk again using a prosthesis. A goal of prosthetic rehabilitation is to reduce and eliminate asymmetries between the prosthetic leg and sound leg which may decrease the negative effects of long term force and work demands on the sound leg. An amputee-specific physical therapy program provides structured motor learning to aid in developing proper gait mechanics. However, physical therapy is not standard of care for all individuals receiving their first prosthesis due to limited evidence showing improved gait. Thus, the purpose of this study was to determine whether amputees receiving physical therapy have better gait mechanics than those that do not. It was hypothesized that those who underwent an amputee-specific physical therapy program would display a more symmetrical gait pattern. Transtibial amputees walked overground at self-selected pace while kinetic (600Hz) and kinematic (60Hz) data were collected. The therapy group had previously received 2-3 therapy sessions per week for 3 months. Asymmetries were determined through dependent t-tests (α=0.05) comparing sound leg and prosthetic leg kinetic variables. Of the 23 kinetic variables tested, 17 variables showed significant difference between the sound leg and prosthetic leg for the group that did not receive the amputee-specific physical therapy. For the group that had previously received the therapy, only 4 variables showed differences between the sound and prosthetic leg. Thus, we showed that individuals partaking in amputee-specific physical therapy have a more symmetrical gait which results on less force and energy demands on the sound leg.


Name: bryappie

Introduction
Pain, tingling, or numbness in the calves, thighs, and/or buttocks brought on by physical activity is called intermittent claudication (IC). IC is the primary symptom of peripheral arterial disease (PAD) that occurs because blockages in the lower extremity arteries hinder blood flow to the legs. Current conservative treatment for patients with PAD consists of supervised treadmill walking exercise (STW). After STW, patients with PAD exhibit improvement in maximum walking distances(1), but little is known regarding gait biomechanics. This study was conducted to determine the effectiveness of the current conservative treatment on gait biomechanics and lower extremity strength in patients with PAD.

Methods
Fifteen patients (total of 26 claudicating limbs; age: 66±1.9 years, height: 1.75±2.24 m, weight: 89.23± 5.01 kg), diagnosed with PAD were recruited from the Omaha Veterans’ Affairs Medical Center. Patients visited the lab prior to and after completing a prescribed 12-week, 3 times/week STW. Five over-ground walking trials for each leg were performed while kinematics (60 Hz; Motion Analysis Corp., USA) and kinetics (600 Hz; Kistler Instruments, USA) were recorded pre and post 12-weeks STW. Absolute claudication distance (max walk distance) was determined through a progressive, graded treadmill protocol (2 miles/hour, 0% grade with 2% increase every 2 minutes) until maximal claudication pain. Inverse dynamics was used to calculate peak joint torques and powers for the ankle, knee, and hip (Visual 3D, C-Motion, Inc., USA). Peak plantar flexor strength was assessed using an isokinetic dynamometer (Biodex Medical Systems, USA). Differences pre to post STW were determined using paired t-tests (α=0.05).

Results/Conclusion
In agreement with the previous literature, absolute claudication distance significantly increased post STW. No significant differences between baseline and post STW were detected for joint torques and powers, or lower extremity strength. Supervised treadmill walking appears to address a cardiovascular mechanism in PAD. STW may only be helping to improve stamina. The lack of any functional training may be reinforcing poor mechanics, which will continue to hinder patient function with a poor chance for long term benefits to be realized. Future investigation should include functional exercises in patients with PAD.


Listed In: Biomechanics
Name: Michelle Norris

The purpose of this study was to investigate stride rate (SR) dynamics of a recreational runner participating in his debut marathon. Tibial accelerometry data obtained during a half marathon (R1) and marathon (R2) were utilised. SR data were extracted utilising novel computational methods and descriptive statistics were utilised for analysis of R2, and comparison of the first half of the marathon (R2half) to R1. Results indicate that the participant employed comparable SR strategy in R1 and R2half. For R2 a combined decreasing trend in SR and increased variance in SR from 30 km (R2 =0.0238) was observed. Results indicate that the participant had the ability to maintain SR strategy for the first half of the marathon, however as fatigue onset occurred this ability decreased. Running strategies on SR during fatigue may be of future use to recreational runners.


Name: chenwen

Tai Ji is one of the recommended non-pharmacologic treatments for knee osteoarthritis (OA), but it is not clear if all Tai Ji movements would be suitable and beneficial for knee OA patients. PURPOSE: To examine knee biomechanical characteristics of the selected knee unfriendly Tai Ji movement elements performed in high-pose position compared to slow walking. METHODS: Seventeen healthy participants (age: 23.9 ± 2.7 years, height: 1.73 ± 0.08 m, body mass: 69.0 ± 13.0 kg) performed three trials in each of the following five test conditions: level walking at 0.8 m/s and four identified knee unfriendly Tai Ji movement elements: lunge, pushdown and kick performed in high-pose position (35 ± 5°) and pseudo-step. Simultaneous collection of 3D kinematics (120 Hz) and ground reaction forces (1200 Hz) was conducted. A one-way ANOVA was performed with post hoc paired samples t-tests to determine differences of the high-pose lunge, pushdown, and kick, and pseudo-step and walking. RESULTS: Knee flexion range of motion for high-pose lunge (29.5°), pushdown (24.3°) and kick (11.1°) was lower than pseudo-step (45.0°, p<0.001 for all comparisons) and walking (47.8°, p<0.001 for all comparisons). Peak knee extensor moment was lower in high-pose lunge (1.04 Nm/kg), pushdown (1.01 Nm/kg) and kick (0.48 Nm/kg) than pseudo-step (1.46 Nm/kg, p<0.001 for all comparisons), but higher than walking (0.38 Nm/kg, p<0.001 for all comparisons) except for kick. Peak knee abduction moment was higher in pseudo-step (-0.61 Nm/kg) than high-pose pushdown (-0.43 Nm/kg), kick (-0.44 Nm/kg), and walking (-0.45 Nm/kg, for all comparisons p<0.001). CONCLUSION: These findings demonstrate higher peak knee extensor moment in most of the Tai Ji knee unfriendly movement elements compared to slow walking. It is recommended that Tai Ji participants with knee OA and other knee pathological conditions modify knee unfriendly movement elements (e.g. lunge) and reduce the size of their movements to minimize knee joint loading. The Tai Ji movement elements including pushdown and pseudo-step should be avoided in the Tai Ji exercises designed for knee OA patients.


Listed In: Biomechanics
Name: AndreaA

Strength measurements are popular in the clinical practice to evaluate the health status of patients and quantify the outcome of training programs. Currently a common method to measure strength is based on Hand Held Dynamometers (HHD) which is operator-dependent. Some studies were conducted on repeatability of strength measurements but they were limited to the statistical analysis of repeated measurements of force. In this work, the authors developed a methodology to study the quality of knee flexion/extension strength measurements by measuring the effective HHD position and orientation with respect to the patient. HHD positioning attitude was measured by means of an Optoelectronic System for which a marker protocol was defined ad-hoc. The approach allowed to assess quality of measurements and operator’s ability by means of quantitative indices. The protocol permitted the evaluation of: angles of HHD application, angular range of motion of the knee and range of motion of the HHD. RMSE parameters allowed to quantify the inaccuracy associated to the selected indices. Results showed that the operator was not able to keep the subject’s limb completely still. The force exerted by the subject was higher in knee extension and the knee range of motion was higher than expected, however the operator had more difficulties in holding the HHD in knee flexion trials. This work showed that HHD positioning should be as accurate as possible, as it plays an important role for the strength evaluation. Moreover, the operator should be properly trained and should be strong enough to counteract the force of the subject.


Name: lmtennan

INTRODUCTION: Workers in industry wear steel toe boots; however, these boots are inflexible and may restrict foot movement. Occupational kneeling is also associated with an increased risk of knee osteoarthritis. Examination of the effects of work boots in kneeling is needed to better understand potential injury risk. Therefore, the purpose of this study was to analyze the center of pressure (COP) at the knee during kneeling when shod and barefoot.
METHODS: Fifteen, young, healthy males completed five 10-second static kneeling trials in each condition. Lower body kinematics were obtained using the Optotrak system (Certus and 3020, NDI, Waterloo, ON, CA). Force data were measured from a force plate under the knee of the dominant leg (OR6-7, AMTI, Watertown, MA, USA).
The mean COP location was determined with respect to the medial tibial plateau (normalized to tibial width) and the tibial tuberosity (normalized to tibial length) for the medial/lateral and longitudinal directions, respectively.
RESULTS: COP was located more medially in the shod condition (34% (±10.6%) tibial width) compared to the barefoot condition (40% (±11.9%) tibial width) (p=0.0485). COP was located above the tibial tuberosity, with no difference between conditions (shod 11% (±3.2%) tibial length, barefoot: (7%) (±8.8%) tibial length) (p=0.97).
DISCUSSION: There is a difference in COP location in shod compared to barefoot kneeling. A COP location farther from the joint center of rotation, as occurred in the frontal plane of the shod condition, would increase the moment arm of the ground reaction force and thus the moment at the knee.


Listed In: Biomechanics