Virtual Poster Session

Welcome to the Virtual Poster Session, a new and powerful tool for networking and information exchange. Here you can share your work, search though the poster library, and start a dialogue with others in your field. Each uploaded poster that pertains to force measurement and testing can currently be used to apply for an academic travel scholarship; please see the Scholarships page for application details and deadlines.

More Push from your Push-Off: Joint-Level Modifications to Modulate Propulsive Forces in Old Age

Conference: American Society of Biomechanics
Abstract: Even prior to walking slower, older adults walk with a diminished push-off – decreased propulsive forces (FP) accompanied by reduced ankle moment and power generation. The purpose of this study was to identify age-related differences in the joint-level modifications used to modulate FP generation during walking. We posit that there are two possibilities for older adults to enhance FP generation. First, older adults may increase ankle power generation and thereby alleviate compensatory demands at the hip. Alternatively, older adults may opt to exacerbate their distal to proximal redistribution by relying even more on the hip musculature. 10 healthy young adults and 16 healthy older adults participated in this study. Subjects walked at their preferred speed while watching a video monitor displaying their instantaneous FP while instructed to modify their FP to match target values representing normal and ±10% and ±20% of normal. For all trials, we estimated lower extremity joint kinematics and kinetics. During normal walking, older adults exerted smaller FP and ankle power than young adults. Enhancing FP via biofeedback alleviated mechanical power demands at the hip, without changes in ankle power. Further, older adults walked with increased FP without increasing their total positive joint work. Thus, given the same total requisite power generation, older adults got ‘more bang for their ankle power buck’ using biofeedback.
Listed In: Biomechanical Engineering, Biomechanics, Gait,
Tagged In: Aging, gait, ground reaction forces, Joint powers

View PDF | Contact Author