Virtual Poster Session

Welcome to the Virtual Poster Session, a new and powerful tool for networking and information exchange. Here you can share your work, search though the poster library, and start a dialogue with others in your field. Each uploaded poster that pertains to force measurement and testing can currently be used to apply for an academic travel scholarship; please see the Scholarships page for application details and deadlines.

Impacts of Stifle Joint Remodeling on Vertical Ground Reaction Forces Following MCL Transection and Medial Meniscectomy

Conference: Orthopaedic Research Society 2013 Annual Meeting

Functional demands placed on the human knee’s anterior cruciate ligament (ACL) vary with activity but remain impossible to measure directly in-vivo. Our lab is characterizing these demands in the sheep model by recording in vivo knee kinematics and ACL transducer voltages during activities of daily living (ADLs), reproducing these motions using the instrumented limb, and measuring the 3D forces in the ligament. However, up to 13% of patients sustaining ACL injuries will also sustain dual medial meniscus (MM) injuries and up to 10% will sustain dual medial collateral ligament (MCL) injuries. These structures are frequently left unrepaired, which may alter the ACL’s functional demands, resulting in inadequate ACL reconstruction outcomes for patients with dual injuries. Although these structures have been shown to alter ACL loading in cadaveric studies, the extent to which they impact ACL functionality during in vivo ADLs remains unknown. Moreover, changes in ACL functionality over time due to joint healing and remodeling have yet to be investigated. In this study, we aimed to track stifle joint remodeling in response to surgically imposed MCL transections and medial meniscectomies through monitoring vertical ground reaction forces (VGRFs) for three ADLs over 12 weeks. Results of this study may then be used in conjunction with future robotic studies as a tool to estimate in vivo load requirements for ACL reconstructions in patients with dual injuries.

Listed In: Biomechanical Engineering, Biomechanics, Gait, Orthopedic Research,
Tagged In: Biomechanics, ground reaction force, knee joint, MCL, Meniscus, remodeling

View PDF | Contact Author