walking speed

Muscle force prediction of the lower limb compared to surface EMG at different walking speeds in individual healthy subjects.

BACKROUND: Recent developments in modelling have made it easier to use muscle force predictions to augment clinical gait analysis and enhance clinical decision making. OpenSim claims to provide a straight forward, standardised pipeline (SimTrack) to predict muscle forces implemented in routine processing. This project aims to test SimTrack’s potential in the context of clinical gait analysis by developing a standardised protocol which compares predicted muscle forces with surface EMG at a range of walking speeds. METHODS: 10 healthy participants walked at 3 different speeds (comfortable, ±20%). Kinematics, kinetics and surface EMG of the lower limb were captured. Joint angles and ground reaction forces serve as inputs to predict muscle forces using computed muscle control (CMC) within SimTrack. Predicted muscle forces were compared with EMG to validate the model outputs. RESULTS: Agreement between force prediction and EMG varies between muscles. Some muscles show a general agreement and similar variation with walking speed, others show large unexpected differences between CMC outputs and observed EMG. DISCUSSION: These results suggest that this protocol is running in general. For most walking speeds, CMC muscle forces can be predicted within a timeframe appropriate for clinical purposes. However using the default settings, the model predictions do not agree with EMG measurements. Furthermore, during pilot testing of quicker walking speeds (up to +40%) CMC crashed due the chosen musculoskeletal model being too weak. These findings suggest the need of either different generic parameters or subject specific parameters to obtain valid results. Work is continuing to identify these.
Listed In: Biomechanics, Gait, Other