virtual reality; shear force

Perception of Self-Motion Impacts the Variability of Plantar Propulsion Force in Diabetes

People with diabetes mellitus (DM) have been reported of increased ground reaction force (GRF) and plantar propulsion force (PPF) that will worsen the formation of plantar ulcer. The reliance of perception of self-motion has been previously addressed for maintaining stability during locomotion in DM. Therefore, we speculate that perception of self-motion will affect DM’s plantar force adjustment by decreasing GRF/PPF along with reducing of variability (CV). We recruited five DMs and three healthy controls to walk on an instrumented treadmill with their self-selected pace. All subjects went through three no self-motion and three self-motion walking trials (120s/trial). The self-motion was generated by presenting a virtual corridor that moved toward subjects with their matched velocity. Three-axis force data were recorded at 300 Hz. Two-factor ANOVA with repeated measures were conducted to examine the role of visual cue impacts GRF/PPF in DM and age-matched healthy. The visual cue and group factors show significant interaction on PPFPeak and PPFCV. The following comparisons showed significant visual effect on reducing: (1) PPFPeak in healthy controls; (2) PPFCV in DM patients. Generally, the decreased PPFPeak and PPFCV founded in this study were in line with previous study and can be explained as the optimization of neuromuscular locomotor system in the anteroposterior direction. Furthermore, visual perception of self-motion shows its effect on reducing PPFPeak during toe-off in healthy controls. Lastly, the significant decreased PPFCV of DM versus healthy stands for the reduced human movement variability observed in DM’s neuromuscular locomotor system when perception of self-motion is provided.
Listed In: Biomechanics, Gait, Physical Therapy