Comparison of Different Body Postures during Running on Peak Knee and Hip Mechanics

The purpose of the study was to determine whether increasing trunk flexion (TF) and whole body inclination (WBI) angles influences peak knee, hip, and trunk kinematics and kinetics during running. Nineteen participants ran over ground at a self-selected speed under three postures: self-selected normal (SSN), TF, and WBI. Analyses revealed significant differences between conditions for peak knee, hip, and trunk flexion angles and peak knee and hip extension moments. Both TF and WBI postures are effective strategies for reducing peak knee extension moments during running with more load distributed to the hips. This may reduce PFJ stress and therefore aid in knee injury prevention and management. Individual preference of either altered running posture should be utilized in a clinical setting.
Listed In: Biomechanics

The Influence of Trunk Posture on Hip and Knee Moments during Over-ground Running

A high incidence of lower extremity injuries has been reported in runners, with half of the injuries occurring at the knee joint. Sagittal plane trunk posture was shown to influence hip and knee kinetics during landing. This suggests trunk posture may be a risk factor of running injuries. The purpose of this study was aimed to examine the influence of sagittal plane trunk posture on hip and knee kinetics during running. Forty runners were recruited. Three-dimensional kinematics (250Hz, Qualisys) and ground reaction force data (1500Hz, AMTI) were collected while subjects ran with a self-selected trunk posture (speed: 3.4m/s). Mean trunk flexion angle and peak hip and knee extensor moments during the stance phase were calculated. Subjects were dichotomized into High-Flex and Low-Flex groups based on trunk flexion angles. On average, the two groups demonstrate 7.4°difference in trunk flexion. Independent t-tests showed that the Low-Flex group demonstrated significantly higher knee extensor moments and lower hip extensor moments compared to the High-Flex group. Pearson correlations showed that trunk flexion angle was positively correlated with peak hip extensor moment (r=0.44) and inversely correlated with peak knee extensor moment (r=-0.51). The results suggested a small difference in trunk flexion angle has significant influences on hip and knee kinetics. Individuals who run with a more upright trunk posture may be predisposed to a higher risk of patellar tendinopathy and patellofemoral pain. Incorporating a forward lean trunk may be utilized as an intervention strategy to reduce knee loading and risk of knee injuries in runners.

Listed In: Biomechanics, Physical Therapy, Sports Science