Midsole

Effects of a leaf spring structured midsole shoe on the foot kinematics in overground and treadmill running

The concept of a leaf spring structured midsole shoe (LEAF) is based on shifting the foot anteriorly during the first part of stance phase in heel-toe running. The aim of the current study is to analyze the effects of a LEAF compared to a standard foam midsole shoe (FOAM) on the foot kinematics in overground and treadmill running at two running speeds. Nine male heel strikers ran on a treadmill with the LEAF and the FOAM at 3 and 4 m/s, each for 5 min. Furthermore, the participants performed with both shoes six runs each on a 40 m indoor track at running speeds of 3 and 4 m/s. For one stance phase the ground reaction forces were measured using a force plate imbedded in the track. Running speed and shoe order were randomized. Kinematics (VICON, 200Hz) and kinetics (AMTI, 1000Hz; only overground) were used to calculate the anterior shift of the foot, the foot ground angle at heel strike (FGA at HS) and the horizontal path of the center of pressure (COP). The LEAF increases the anterior foot shift in treadmill and overground running at both running speeds compared to the FOAM, without changing the individuals’ strike pattern. Furthermore, the anterior foot shift affects the COP leading to an overall enlarged COP path. These findings indicate a benefit of the structured midsole on performance at least at moderate running speeds
Listed In: Biomechanics, Sports Science