injury biomechanics

Human cadaveric bi-Segment impact experiments at different postures

Victims of improvised explosive devices (IEDs) that have presented spinal injury in recent conflicts have been shown to have a high incidence of lumbar spine fractures. Previous studies have shown that the initial positioning of spinal bone-disc-bone complexes affects their biomechanical response when loaded quasi-statically; such a correlation, however, has not been explored at appropriate high loading rate scenarios that simulate injury. This study aims to investigate the response of lumbar spine cadaveric segments in different postures under axial impact conditions. Three T11-L1 bi-segments were dissected and tested destructively in a drop tower under flexed/neutral/extended postures. Strains were measured on the vertebral body and the spinous process of T12. Forces were measured cranially using a 6-axis load cell, and a high-speed camera was used to capture displacements and fracture. The impacted specimens were CT-scanned to identify the fracture pattern. Whilst axial force to failure was similar for flexed and extended postures, the non-axial forces and the bending moments, however, were dissimilar between postures. Although all specimens showed a burst fracture pattern, the extended posture failed more posteriorly. This suggests that axial force alone is not adequate to predict injury severity in the lumbar spine. This insight would not have been possible without the use of the 6-axis load cell. As metrics for spinal injury in surrogates take into account only the axial force, this programme of work may provide data for a better injury criterion and allow for a mechanistic understanding of the effects of posture on injury risk.
Listed In: Biomechanical Engineering, Biomechanics, Mechanical Engineering, Orthopedic Research