gender

The Effects of Knee Taping Techniques on Lower Extremity Kinematics During Running

Introduction: Running is a popular form of physical activity linked to various lower extremity injuries. A commonly used technique for injury prevention and rehabilitation is taping. There is considerable research investigating running biomechanics, however, there has been limited to no research examining the effects of gender, speed, and the type of tape used on two-dimensional lower extremity kinematics. Therefore, the purpose of this pilot study was to investigate the effects of gender, speed, and tape on two-dimensional lower extremity kinematics and stride characteristics during running. Method: Eight healthy runners participated (4 males, 4 females). Taping interventions (Leukotape, Kinesio Tape, no tape) and speeds (2.35 m/s, 3.35 m/s) were randomized and lower extremity stride kinematics were obtained using the Peak Motus System at initial contact, midstance, and toe off of running. Comparisons were made using descriptive statistics. Results: Females exhibited greater hip (FIC= 164.04+1.99°; MIC= 167.54+2.12°) and knee flexion (FIC= 167.73+0.93°; MIC= 170.42+1.65°; FPK= 142.83+1.28°; MPK= 146.35+1.21°), while males had greater ankle dorsiflexion (FIC= 88.60+1.00°; MIC= 84.14+1.08°) and plantarflexion (FTO= 51.90+1.01°; MTO= 55.99+0.825°). Females spent more time in support (FCT= 0.28+0.03s; MCT= 0.26+0.02s) while males spent more time in the air (FFT= 0.45+0.02s; MFT= 0.48+0.01s). Faster speed was associated with greater hip flexion and extension (SIC= 167.57+1.95°; FIC= 164.01+2.11°; STO= 197.14+1.23°; FTO= 201.28+0.74°), peak knee flexion (SPK= 145.39+1.82°; FPK= 143.79+2.39°), and less time during contact (SIC = 0.30+0.01s; FIC= 0.25+0.00s). Conclusion: Gender and speed seem to have effects on lower extremity stride kinematics, whereas type of tape does not.
Listed In: Biomechanics, Gait, Other