Galvanic Vestibular Stimulation; Posturopgraphy

Suprathreshold Galvanic Vestibular Stimulation as an analog of vestibular dysfunction

In the past we have shown that exposure to increasing amplitudes of Galvanic vestibular stimulation (GVS) induces a corresponding increasing deficit in postural control, cognition and autonomic function. Previous studies have suggested that suprathreshold GVS induces a similar pattern of postural instability as the one observed on bilateral vestibular loss. The aim of the present study was to determine whether different current intensities would affect somatosensory, visual, and vestibular sensory system similarly to patient affected by vestibular deficits. We assessed postural control in unilateral (right and left) and bilateral vestibular loss patients, an aged matched healthy control group, and during pseudorandom binaural bipolar GVS in healthy subjects at one of three current amplitudes (1 mA, 3.5 mA, 5 mA). Balance was assessed with sensory organization test (SOT) that quantifies the effectiveness of vestibular, visual and somatosensory input to postural control. Results showed that GVS significantly affects vestibular control of posture compared to baseline at all current amplitudes, whereas somatosensory and visual performance was unaffected. Vestibular patients showed a significant decrease in vestibular and visual response compared to control. Suprathreshold GVS 5 mA showed a similar large effect size to unilateral and bilateral vestibular loss patients relative to their aged matched control. NASA NCC 9-58 and NNX09AL14G

Listed In: Biomechanical Engineering, Neuroscience, Posturography

Sensorimotor adaptation to Galvanic Vestibular Stimulation: a longitudinal study

Our previous study showed that exposure to Galvanic Vestibular Stimulation (GVS) induces temporary postural deficits similar to the ones experienced by astronauts after microgravity exposure. Preliminary evidence suggests that repeated exposures to GVS might induce adaptation of sway response. We studied whether repeated exposure to pseudorandom GVS over a 3 month period facilitates the adaptation response. Twenty healthy subjects were randomly assigned into 2 groups: suprathreshold (5mA) GVS, and subthreshold (1mA). The test battery included: Romberg, sensory organization test (posturography), dynamic visual acuity, and torsional eye movement. Each test was performed with no GVS, and then with 10 min of GVS per session for 12 consecutive weeks. Sensorimotor adaptation was also measured during two follow up sessions at weeks 18 and 36. Results showed that subthreshold GVS did not affect vestibular scores. Suprathreshold GVS significantly decreased vestibular scores during the first few weeks, with postural performance returning to baseline around the 6th week of exposure. This improvement was maintained during the follow up sessions. Our results suggest that 60 min of subthreshold GVS are sufficient to elicit adaptation to the stimulus. No significant changes were shown in low-level vestibulo-ocular reflexes during torsional eye movement, or vestibulo-spinal reflexes during Romberg; confirming that adaptation only occurs at the level of the CNS. NASA NCC 9-58; NNX09AL14G
Listed In: Biomechanical Engineering, Neuroscience, Posturography