Fractal analysis

Adaptive fractal analysis of postural sway

Fractal time series analysis methods are commonly used for analyzing center of pressure (COP) signals with the goal of revealing the underlying neuromuscular processes for upright stance control. The use of fractal methods is often coupled with the assumption that the COP is an instance of fractional Gaussian noise (fGn) or fractional Brownian motion (fBm). Our purpose was to evaluate the applicability of the fGn-fBm framework to the COP in light of several characteristics of COP signals revealed by a new method, adaptive fractal analysis (AFA; Riley et al., 2012). Our results showed that there are potentially three fractal scaling regions in the COP as opposed to one as expected from a pure fGn or fBm process. The scaling region at the fastest scale was anti-persistent and spanned ~30-90 msec, the intermediate was persistent and spanned ~200 msec-1.9 sec, and the slowest was anti-persistent and spanned ~5-40 sec. The intermediate fractal scaling region was the most clearly defined, but it only contributed around 11% of the total spectral energy of the COP signal, indicating that other features of the COP signal contribute more importantly to the overall dynamics. Also, more than half of the Hurst exponents estimated for the intermediate region were greater than the theoretically expected range [0,1] for fGn-fBm processes. These results suggest the fGn-fBm framework is not appropriate for modeling COP signals. ON-OFF intermittency might provide a better modeling framework for the COP, and multiscale approaches may be more appropriate for analyzing COP data.

Listed In: Neuroscience, Posturography