force plate.

Static postural control does not strongly predict dynamic gait stability recovery following a trip in adults with and without vestibular dysfunction

Unilateral peripheral vestibular disorder (UPVD) negatively affects upper and lower body motor performance, but postural control during quiet stance in UPVD patients has not been directly compared with dynamic stability control after an unexpected perturbation during locomotion. We analysed centre of pressure (COP) characteristics during static posturography in UPVD patients and healthy controls and compared this with performance of a trip recovery task. 17 UPVD patients and 17 healthy controls were unexpectedly tripped while walking on a treadmill. The margin of stability (MoS) was calculated at touchdown (TD) of the perturbed step and the first six recovery steps. Posturography was used to assess postural stability during 30 seconds of standing with eyes open and closed using a force plate. The trip reduced the MoS of the perturbed leg (p<0.05) with no significant differences in MoS between the groups. Controls returned to MoS baseline level in five steps and patients did not return within the six steps. UPVD patients showed a greater total COP sway path excursion (closed eyes only), anterior-posterior range of COP distance and a more posterior COP position in relation to the posterior boundary of the base of support. There were no significant correlations between COP sway path excursion and MoS values. We concluded that UPVD patients have a diminished ability to control and recover dynamic gait stability after an unexpected trip and lower static postural stability control compared to healthy matched controls, but that trip recovery and static postural control rely on different control mechanisms.
Listed In: Biomechanics, Gait, Neuroscience, Physical Therapy, Posturography


A COMPARISON OF FOOT STRIKE EVENTS USING THE FORCE PLATE AND PEAK IMPACT ACCELERATION MEASURES

A popular method for measuring initial contact (foot-strike) during running is the force platform. It has been proposed that the foot contact events can be estimated using peak impact related accelerations of the leg using accelerometers. Various studies have been conducted to compare force platform and accelerometer methods in walking and running. The aim of this study was to develop a method for identifying peak impact accelerations in the anterior- posterior axis using the Delsys Trigno System during running and compare this with initial contact via force plates. Seven national and international sprinters completed runs across a force platform with an accelerometer fixed to their shin. The results showed the acceleration of the anterior-posterior axis approximated foot-strike within ±0.017 s of the foot-strike event detected by the force plate.
Listed In: Biomechanics, Gait