Childhood Obesity

Effects of Adiposity on Walking Muscle Function in Children: Implications for Bio-Feedback and Assistive Devices

Altered gait biomechanics associated with pediatric obesity may increase the risk of musculoskeletal injury/pathology during physical activity and/or diminish a child’s ability to engage in sufficient physical activity. The biomechanical mechanisms responsible for the altered gait in obese children are not well understood, particularly as they relate to increases in adipose tissue. The purpose of this study was to investigate the role of adiposity (i.e. body fat percentage, BF%) on lower extremity kinematics, muscle force requirements and their individual contributions to the acceleration of the center of mass (COM) during walking. We scaled a musculoskeletal model to the anthropometrics of each participant (n=14, 8-12 years old, BF%: 16-41%) and generated dynamic simulations of walking to predict muscle forces and their contributions to the acceleration of the COM. Muscle force output was normalized to muscle mass. BF% was correlated with average knee flexion angle during stance (r=−0.54) and pelvic obliquity range of motion (r=0.78), as well as with relative vasti (r=−0.60), gluteus medius (r=0.65) and soleus (r=0.59) force production. Contributions to COM acceleration from the vasti were negatively correlated to BF% (vertical: r=−0.75, posterior: r=−0.68, respectively), but there was no correlation between BF% and COM accelerations produced by the gluteus medius. The functional demands and relative force requirements of the hip abductors during walking in pediatric obesity may contribute to altered gait kinematics. Our results provide insight into the muscle force requirements during walking in pediatric obesity that may be used to improve the quality/quantity of locomotor activity in this population.
Listed In: Biomechanical Engineering, Biomechanics, Gait