Aging

Locomotor Stability Control and Vestibular Function among Older Adults: Implications for Falls Prevention and Research

In the following project, we explored the relationships between age, vestibulopathy and stability control, in order to determine the age and vestibulopathy-related effects on stability control, and to establish if a relationship existed between static and dynamic stability task performance. The first study examined the response to repeated trip perturbations of healthy middle aged adults and vestibulopathy patients, the second examined feedforward adaptation of gait in young, middle aged and older adults to a sustained mechanical perturbation and the third examined the relationship between standing balance and recovery following a tripping perturbation in vestibulopathy patients. The results showed that vestibulopathy is related to a diminished ability to control and recover gait stability after an unexpected perturbation, and to a deficient reactive adaptation potential. With ageing, the ability to recalibrate locomotor commands to control stability is preserved, although this recalibration may be slower in old age compared to middle and young age. Given that a decline in vestibular function is seen with increasing age, we suggest that assessment of vestibular function may be necessary when investigating locomotor stability and falls risk in both research and clinical settings. Finally, despite static balance tasks and parameters being commonly used in clinical settings, we did not find a consistent relationship between static and dynamic stability task performance, indicating the importance of dynamic stability tests when assessing falls risk in clinical settings.
Listed In: Biomechanics, Gait, Posturography


'Moving Forward': Gait, Cognition and Associated Risk Factors: Insights from SHARE and TILDA

The established pathway of cognitive decline identifies Mild Cognitive Impairment (MCI) as a common pre-dementia syndrome. As MCI can represent the endpoint of cognitive decline or a transient state, more predictive diagnostic tools are required. A new pre-dementia syndrome, Motoric Cognitive Risk (MCR) syndrome, has been proposed. It is defined by slow gait and cognitive complaints but absence of dementia and mobility disability. MCR aims to improve on the predictive power of MCI, this study aims to explore it’s claim. Associations have been uncovered between differing cognitive domains and specific characteristics of gait. Leveraging the gait-cognitive function relationship is a novel approach to potentially highlighting those experiencing cognitive decline. However, the diagnostic tool of MCR is a new construct and currently imperfect, its efficacy not fully validated and sensitivity for dementia prediction relatively unknown. Reliable data on prevalence and risk factors help contribute to this validation process. In this presentation prevalence data for a multi-country aging study and a nationally representative community dwelling aging study will be presented. The variables available in both datasets which will be of interest in this study include; Gait Speed, Global Cognition (Mini-Mental State Exam (MMSE) score), Presence of Cognitive Complaints, Age, Body Mass Index (BMI), Dementia diagnosis (reported or imputed) and Waist Circumference. This study will inform the following research project, which will aim to assess whether specific gait components or combinations alone are better than the MCR construct in their association to cognitive decline.
Listed In: Gait, Neuroscience


Effects of cortical stimulation on sensorimotor hand functions in healthy elderly individuals

Transcranial anodal stimulation (tDCS) improves manual dexterity in healthy old adults. The underlying changes in finger force behavior for this improved dexterity have not been reported. Here, we investigated the effects of tDCS (20-min) over primary motor cortex (M1) combined with repeated practice on the Grooved pegboard test (tDCS+MP) on the fingertip forces applied to an object during grasp and manipulation. Eight right-handed able-bodied individuals (60-85 years) participated in a sham-controlled, single-blinded study. Each participant received anodal and sham intervention in two sessions at least 5-day apart. Before and after intervention, they performed a ‘key-slot’ task that required inserting a slot on an object onto a stationary bar, an isometric force production task using a pinch grip, and the Grooved pegboard test. Anodal relative to sham tDCS+MP allowed participants to better retain the improved performance on the pegboard test. For the isometric task, anodal tDCS+MP significantly increased the variability of force compared to sham tDCS+MP. More importantly, the improved retention of performance post-anodal tDCS correlated with the reduction in force angle variability on the key-slot task, but not with the change in force variability on the isometric task. Our findings suggest that anodal tDCS+MP facilitated retention of learning on a skillful manual task in healthy old adults, consistent with the role of M1 in retention of learning versus skill acquisition. Furthermore, improved force steadiness is one of the potential mechanisms through which short-term anodal tDCS during motor training yields improved performance on a functional task.
Listed In: Biomechanics, Neuroscience