Sports Science

THE ASSESSMENT OF STRIDE FREQUENCY IN RUNNING USING A SINGLE ACCELEROMETER

Accelerometers have become extremely popular in the measurement of stride frequency as well as other related stride variables with current sensors capable of recording both accelerations and electromyography. The purpose of this preliminary investigation was to assess the estimation of stride frequency during running using a single tri-axial accelerometer compared to a commonly used infrared device the OptojumpTM system. Five healthy participants wore a Delsys Trigno tri-axial accelerometer attached to the right anterior shin and participants repeatedly ran at a submaximal pace through a four metre section of OptojumpTM. Stride frequency was calculated as stride time divided by one. For the OptojumpTM, stride time was the sum of contact and flight times from two consecutive steps. For the accelerometer, stride time was calculated as the time between two consecutive foot contacts on the right side. Foot contact was identified by local maxima in the Y (medial-lateral) acceleration trace. Estimates of stride frequency were compared using paired samples t- tests, intraclass correlation coefficients (ICCs) and Bland and Altman 95% limits of agreement (LOA) with significance set at p < 0.05. The mean difference between estimates was 0.01 Hz (95% LOA: -0.05-0.07 Hz) with single and average ICCs for stride frequency of 0.93 and 0.96 respectively. The results suggest that an accelerometer attached to the shin can accurately estimate stride frequency in running. Discrepancies in stride frequencies can be partially explained by differences in device sampling rates i.e. 137.15 Hz versus 1,000 Hz
Listed In: Biomechanics, Gait, Sports Science


Ankle Sprain Copers Demonstrate Unique Lower Extremity Neuromechanics Compared to Healthy Controls and Chronic Ankle Instability Subjects

Chronic ankle instability (CAI) patients show various sensorimotor deficits, which may be related to the chronic nature of instability. Ultimately, an intervention should focus on deficits which may perpetuate the problem, but an understanding of successful sensorimotor function may best come from those who sprained their ankles with no problematics outcome (copers). PURPOSE: To examine sagittal ankle angles, moments, tibialis anterior and medial gastrocnemius EMG activation during a single-leg maximal vertical side-cutting jump task. METHODS: 66 subjects (M=42, F=24; 22.2±2 yrs, 173.8±8 cm, 71.4±11 kg) consisted of 22 CAI (77.1±15.3% FAAM ADL, 62.5±20.4% FAAM Sports, 4.1±2.8 sprains), 22 Copers (100% FAAM ADL & Sports, 2.0±1.1 sprains), and 22 healthy controls. Subjects performed 10 jumps, consisting of a max vertical jump, landing on a force plate, and transitioning immediately to a side-cutting jump, while the dependent variables were collected during stance. Functional linear models (α=.05) were used to detect mean difference between groups. If functions and associated 95% confidence intervals did not cross the zero, then significant differences existed. RESULTS: Figure 1 shows that copers and AI exhibited up to 2.5° less dorsiflexion angle during 30-75% of stance, relative to controls. While copers exhibited similar neuromechanics to controls in sagittal ankle moment, tibialis anterior and medial gastrocnemius EMG activation, those with CAI demonstrated up to 0.5 Nm/kg less plantarflexion moment, 2.5% less tibialis anterior and 47% less medial gastrocnemius EMG activation. CONCLUSION: Copers show neuromechanics similar to healthy controls at times, and similar to those with CAI at others. Reduced plantarflexion moment and medial gastrocnemius EMG activation suggest that those with CAI may rely more on static stabilizers (e.g., bones) than dynamic stabilizers (e.g., muscles), which could increase impact loads on tibiotalar cartilage surface.


Listed In: Biomechanics, Sports Science


Matching participants for triceps surae muscle-tendon unit mechanical properties eliminates age-related differences in drop jump performance

In the current study, we aimed to determine if differences in drop jump height or motor task execution strategy between young and middle-aged adults exist, when triceps surae MTU capacities (muscle strength and tendon stiffness) were matched. The triceps surae MTU biomechanical properties of 29 middle-aged and 26 younger adults were assessed during isometric voluntary ankle plantarflexion contractions of the dominant leg using a custom-made dynamometer and ultrasonography simultaneously. The 12 young adults with the lowest triceps surae muscle strength and the 12 middle-aged adults with the greatest muscle strength then completed a series of drop jumps from different heights. Ground contact time, average vertical ground reaction force, average mechanical power and jumping height were recorded. Younger and middle-aged adults attained comparable jumping heights independent of the drop jump height. There were significant age effects on ground contact time and average vertical ground reaction force during ground contact phase, with the middle-aged adults showing higher ground contact times but lower forces, leading to a significant age effect on mechanical power. Significant correlations were found between triceps surae MTU capacities and drop jump height. The results of the current study demonstrate that when triceps surae MTU capacities are matched, young and middle-aged adults show comparable performance of a jumping task, despite having different motor strategies. Finally, the results suggest that neuromuscular factors other than maximum isometric strength and tendon stiffness may influence motor task execution strategy during jumping.
Listed In: Biomechanics, Sports Science


Effects of an 8-week cadence gait training program on knee loading in individuals following ACL reconstruction

While normalization of gait is a primary goal of early rehabilitation, between limb asymmetries in knee extensor moment can persist 6-24 months later and previous literature assessing gait interventions is limited. The purpose of this study was to assess the influence of subject-specific cadence gait training program on knee loading mechanics following ACLr. Nine individuals completed an 8-week cadence training program (20min, 3x/week; Table1) and nine sex- and surgery-matched individuals served as controls. All eighteen participants received standard physical therapy and were tested at 1 and 3 months post-op. Kinematic and kinetic data were collected during walking at a self-selected speed. Repeated measures ANOVAs were used for comparisons; significance α≤0.05. Main effects of limb and time were observed: knee ROM (kROM;p<0.001;p=0.044;Fig.1) and knee extensor moment (kEXT;p=0.003;p=0.002) in the cadence and control groups, respectively. No main effects of group for kROM (p=0.136) or kEXT (p=0.229) were found. A trend toward a significant group x time x limb interaction was observed in kEXT (p=0.092), but not kROM (p=0.412). Post-hoc analyses of kEXT (Fig.2) revealed a significant time x limb interaction for the cadence group (p=0.053) but not the control group (p=0.884). In the cadence group, the time x limb interaction was driven by a 131% increase in kEXT in the surgical limb versus a 42% increase in the non-surgical limb between T1 and T2. Consistent with previous findings, these pilot data show promising results as the cadence intervention resulted in improvements in sagittal plane knee loading compared to controls.


Listed In: Biomechanics, Gait, Orthopedic Research, Physical Therapy, Sports Science


EFFECTS OF BODY POSITION AND SADDLE TYPE ON BICYCLE-RIDER INTERFACE FORCES: ROAD VS. TRIATHLON

While the popularity of triathlon is increasing, the underlying biomechanics of the various bicycling positions and saddle types are not yet understood. PURPOSE: To determine how bicycle rider position and saddle type (road vs. triathlon) affect the bicycle-rider interface forces (BRIFs) at a standardized power and cadence. METHODS: A stationary cycling ergometer was modified to include force transducers at the saddle, bottom bracket, and stem. Anatomical measurements were made in order to fine-tune rider fit on the ergometer. 9 subjects completed riding trials in all combinations of road position, road saddle, triathlon position, and triathlon saddle. Riding trials were 6 minutes, at a standardized power output of 2 Watts per kilogram (W/kg) and 90 Revolutions per Minute (RPM). RESULTS: Analysis was broken into three categories: Road Saddle, Road Position (RR) vs. Triathlon Saddle, Road Position (TR), Road Saddle, Triathlon Position (RT) vs. Triathlon Saddle, Triathlon Position (TT), and Road Saddle, Road Position vs. Triathlon Saddle, Triathlon Position. Surprisingly, there were no significant differences in saddle vertical forces between either body positions or saddle type. However, there were significant differences at the handlebar; 8.4% more body weight supported at the handlebar in the triathlon position compared to the road position while using a triathlon saddle. CONCLUSION: Across cycling positions, there is a significant change in saddle and stem vertical forces. However, within a cycling position, saddle type does not change the amount of vertical force seen at the saddle.
Listed In: Biomechanical Engineering, Biomechanics, Sports Science


Prolonged Cycling&#039;s Effect on Transition Run Mechanics in Triathletes

A period of incoordination and fatigue is commonly associated with the transition run in triathletes, in which running mechanics are thought to be altered. Few studies have examined the changes in ground reaction forces and vertical loading rate during the transition run. Our purpose was to assess the changes that occur in ground reaction forces during a fatigued transition run in triathletes. 13 recreational male triathletes (34 ± 4.2 years) performed an incremental cycling test and a cycle to run transition on separate testing sessions. A 15-camera Vicon motion capture system collecting at 200 Hz and an AMTI force instrumented treadmill collecting at 2000 Hz were used in conjunction with a modified Plug-In Gait marker to collect trajectory and analog data for pre and post-cycling running trials. Ground reaction forces and temporal spatial parameters were assessed during stance of all running trials using Visual 3D software. Peak vertical ground reaction force and step length decreased significantly from pre-cycling to immediate post-cycling measures (p=.003, p<.001), no difference existed for either variable for pre-cycling vs. 10min post-cycling. Instantaneous peak vertical loading rate (IVLR) and step rate increased significantly from pre-cycling to immediate post-cycling measures (p=.05, p<.001), no difference existed for stride rate for pre-cycling vs. 10min post-cycling. IVLR remained significantly increased at the 10 min post-cyling (p=.035). The study findings suggest that fatigue from prolonged cycling can negatively impact triathletes’ ability to attenuate ground reaction forces in subsequent running.
Listed In: Biomechanics, Gait, Sports Science


Modeling 3D Ground Reaction Forces During Walking Using Nanocomposite Piezo-Responsive Foam Sensors

This study presents a new technique for acquiring ground reaction forces from novel, nanocomposite piezo-responsive foam (NCPF) sensors. A shoe was fitted with four NCPF sensors located at the heel, arch, ball, and toe positions. Running data was collected simultaneously from both the shoe sensors and from a force-sensing treadmill. A portion (30 randomly selected stance phases) of the treadmill data was used to develop a predictive stochastic model of GRF based on the sensor inputs. The stochastic model was then used to predict GRF for the remaining shoe sensor data, which was then benchmarked against the treadmill data. The results indicated that this model was able to predict forces in the x-axis (anterior-posterior) with 2.38% error, forces in the y-axis (medial-lateral) with 6.01% error, and forces in the z-axis (vertical) with 2.43% error. These novel sensors hold potential to dramatically improve both the ease and expense associated with GRF data, as well as allow unprecedented ability to measure GRF during real world applications outside of the laboratory.
Listed In: Biomechanical Engineering, Gait, Mechanical Engineering, Sports Science


Movement and Loading Symmetry Changes when Wearing a Functional Knee Brace Following ACL Reconstruction

Asymmetries in discrete measures following anterior cruciate ligament reconstruction (ACL-R) during landing have been reported to be risk factors for secondary ACL injuries. Our purpose was to examine the impact of functional brace wear on kinematic and kinetic inter-limb movement symmetry during landing in ACL-R patients. 20 adolescent athletes (15.8 ± 1.2 years) (7 male, 13 female) 6 months following ACL reconstruction performed 5 trials of a stop-jump task in both a braced (B) and non-braced (NB) condition, with the first landing being analyzed. A custom fit functional knee brace (DJO, Vista, CA) was worn on the ACL reconstructed limb (AL) during the B trials. Mean curves were created for each limb (AL and unaffected limb (UL)) for the vertical (vGRF) and anterior-posterior ground reaction forces (apGRF) and frontal and sagittal knee angles and moments. Coefficients of multiple determination (CMD) between the AL and UL curves were compared between B and NB conditions with students’ t-tests (p≤0.05). No significant differences existed for movement and loading symmetry between B and NB conditions among all subjects. Secondary analysis revealed significant differences in apGRF (p=0.014), vGRF (p=0.011) and sagittal knee angles (p=0.003) in subjects with improved sagittal knee angle symmetry in the B condition. The data show that brace wear improves loading symmetry in adolescent patients that also exhibit improved sagittal knee angle symmetry while braced 6 months following ACL-R. Identifying factors that affect inter-limb movement and loading response to brace wear could assist in determining each patient’s need for a brace.


Listed In: Biomechanics, Sports Science


Predictors of patellofemoral joint stress: an examination of patellofemoral joint morphology

INTRODUCTION: Patellofemoral pain (PFP) is a common condition seen in orthopedic practice, accounting for approximately 25-40% of all knee injuries [1]. A commonly cited hypothesis as to the cause of PFP is elevated patellofemoral joint (PFJ) stress [2] secondary to abnormal PFJ structure. Previous studies have shown that persons with PFP exhibit altered patella position [3], abnormal femoral morphology [4], and decreased patella cartilage thickness [5] when compared to healthy individuals. However, the influence of the abnormal morphology on PFJ stress is unknown. METHODS: Nineteen subjects (10 PFP and 9 pain-free controls) were recruited for this study. Each subject completed 2 phases of data collection: magnetic resonance imaging (MRI) assessment and biomechanical testing. The measurement of morphological variables (patella height (Insall-Salvati ratio or ISR), lateral trochlear inclination angle (LTI), and patella cartilage thickness). For the biomechanical testing, kinematic, kinetic, and electromyographic were obtained. RESULTS AND DISCUSSION: Pearson correlation coefficients revealed that only patella height (r=0.48, p=0.018) and patella cartilage thickness (r=-0.58, p=0.005) were significantly correlated with peak hydrostatic pressure (Table 1). Results of the stepwise regression analysis revealed that patella cartilage thickness was the single best predictor of peak hydrostatic pressure, followed by patella height. Together, these 2 variables explained 50% of the variance in peak PFJ stress. The results of the current study support the premise that PFJ stress is associated with PFJ morphology. Patella height was the best predictor of PFJ stress with greater degrees of patella height being correlated with greater stress. This is logical given that a higher positioned patella articulates with the more shallow portion of the trochlear groove, thus decreasing PFJ contact area [6]. The finding that patella cartilage thickness was negatively correlated with PFJ stress is in agreement with the results of Li et al. [7], who demonstrated that a reduction of cartilage thickness causes increase cartilage stress. Furthermore, our findings revealed that 50% of the variance in PFJ stress could be explained by morphological factors. CONCLUSIONS: Identifying the underlying factors that contribute to elevated PFJ stress is an important step in developing effective interventions for persons with PFP. Although abnormal structure may not be correctable through conservative measures, it is important to recognize abnormal structure may play a role in contributing to pain and pathology.
Listed In: Biomechanics, Sports Science


IN VIVO ACHILLES TENDON FORCES DURING CYCLING DERIVED FROM 3D ULTRASOUND-BASED MEASURES OF TENDON STRAIN

Introduction and Objectives: Traditional motion analysis provides limited insight into muscle and tendon forces during movement. This study used B-mode ultrasound, in combination with measured joint angles and scaled musculoskeletal models, to provide subject-specific estimates of in vivo Achilles tendon (AT) force. Previous studies have used ultrasound images, tracked in 3D space, to estimate AT strains during walking, running, and jumping [1,2]. Our approach extends this work in one novel way. Specifically, we characterized AT stiffness on a subject-specific basis by recording subjects’ ankle moments and AT strains during a series of isometric tests. We then used these data to estimate AT force during movement from in vivo measurements of tendon strain. To demonstrate this approach, we report AT forces measured during cycling. Cycling offers a unique paradigm for studying AT mechanics. First, because the crank trajectory is constrained, joint angles and muscle-tendon unit (MTU) lengths of the gastrocnemius (MG, LG) and soleus (SOL) are also constrained. By varying crank load, subjects’ ankle moments can be altered without imposing changes in MTU lengths. For this study, 10 competitive cyclists were tested at 4 different crank loads while pedaling at 80 rpm. Based on published EMG recordings (e.g., [3]) and on in vivo tendon force buckle data from one subject [4], we hypothesized that the cyclists’ AT forces would increase systematically with crank load. Methods: We coupled B-mode ultrasound with motion capture, EMG, and pedal forces to estimate in vivo AT forces non-invasively during cycling and during a series of isometric ankle plantarflexion tests. Marker trajectories were tracked using an optical motion capture system. Joint angles and MTU lengths were calculated based on scaled musculoskeletal models [5] using OpenSim [6]. A 50 mm linear-array B-mode ultrasound probe was secured over the distal muscle-tendon junction (MTJ) of the MG and was tracked using rigid-body clusters of LEDs. AT lengths were calculated as the distance from a calcaneus marker to the 3D coordinates of the MG MTJ. Subject-specific AT force-strain curves were obtained from isometric tests using ultrasound to track the MTJ, markers to track both the ultrasound probe and the AT insertion, and a strain gauge to measure the net ankle torques generated by each of the subjects at ankle angles of -10° dorsiflexion, 0°, +10° plantarflexion, and +20° plantarflexion. AT strain during cycling was converted to AT force using each subject’s force-strain relation. Subject-specific tendon slack lengths were calculated as the mean tendon length at 310° over all pedal cycles, based on examination of the AT length changes and on published data showing that this position in the pedal cycle precedes tendon loading across multiple pedalling conditions [4]. Results: Peak AT forces during cycling ranged from 1320 to 2160 N ± 400 N (mean± SD) and increased systematically with load (p<0.001; Fig. 1A/B). At the highest load, the peak AT forces represented, on average, 50 to 70 % of the combined MG, LG, and SOL muscles’ maximum isometric force-generating capacity, as estimated from the muscles’ scaled volumes [7], the muscles’ scaled optimal fiber lengths [5], and a specific tension of 20-30 N/cm2. Peak AT forces occurred midway through the pedaling downstroke, at about 80°, which is consistent with the AT forces directly measured from one subject [4] and with patterns of EMG during cycling [3]. Peak AT strains during cycling were uncoupled from the MG MTU strains and ranged from 3 to 5 % across the different loads examined, measured at the MG MTJ. Conclusion: Our results are consistent with published data from a single subject in which AT force was measured using an implanted tendon buckle [8]; however, our results were obtained non-invasively using ultrasound and motion capture. These methods substantially augment the experimental tools available to study muscle-tendon dynamics during movement. References: [1]Lichtwark and Wilson, 2005, J Exp Biol, 208(24), 4715-4725. [2]Lichtwark et al., 2007, J Biomech, 40(1), 157-164. [3]Wakeling and Horn, 2009, J Neurophysiol, 101(2), 843-854. [4]Gregor et al., 1987, Int J Sports Med, 8(S1), S9-S14. [5]Arnold et al., 2010, Ann Biomed Eng, 38(2), 269-279. [6]Delp et al., 2007, IEEE Trans Bio Med Eng, 54(11), 1940-50. [7]Handsfield et al., 2014, J Biomech, 47(3),631-638. [8]Gregor et al. 1991, J Biomech, 24(5), 287-297
Listed In: Biomechanics, Sports Science