## Accelerometry for outdoor effort quantification

Assessing the lower limb properties in-situ is of a major interest for analyzing the athletic performance. From a physical point of view, the lower limb could be modeled as single linear spring which supports the whole body mass. The main mechanical parameter studied when using this spring-mass-model is the leg-spring stiffness (k). In laboratory conditions, the movements are assessed using a force plate (Meth1) which measures the ground reaction force (GRF), and a motion capture system which could estimate the displacement of the centre of mass (CoM). In this way, k is calculated as shown in equation (2).More recent methods allow to calculate k in field conditions by using either foot switches (Meth2) or accelerometry-based instruments (Meth3) which are both wireless devices. The associated calculated methods assume that force-time signal is a sine wave, described by the equation (3) with equation (4) (CT: contact time; FT: flight time). In these cases, the kinematic measurement (CoM) could be calculated either by a mathematical approach (Eq.(5)) (meth2), or by double integrating the acceleration (meth3) in order to calculate k.Thanks to their transportability, the methods 2 and 3 offer not only the possibility to assess the lower limb movements, but also, to objectively follow up the athletic abilities (performance, reactivity, force and power, stiffness) in-situ.

Listed In: Biomechanical Engineering, Biomechanics, Sports Science

## A POLYMER-BASED MICROFLUIDIC RESISTIVE SENSOR FOR DETECTING DISTRIBUTED LOADS

Listed In: Biomechanical Engineering

- « first
- ‹ previous
- 1
- 2
- 3