The Force and Motion Foundation is a 501(c)(3) non-profit organization whose purpose is to support students in fields related to multi-axis force measurement and testing. Fully funded by AMTI, The Foundation awards travel grants and academic scholarships to aid promising graduate students on their paths to becoming the scientific leaders of tomorrow. The Foundation also serves as creator and curator of the Virtual Poster Session, an international resource for information exchange and networking within the academic community.


Just click the orange tabs to learn more about all the foundation has to offer...


Since its inception, The Foundation has granted $160,000.00 in academic scholarships and $29,000.00 in travel awards





CONGRATULATIONS goes out to our 3rd Quarter Travel Award winners:  Kyeongtak Song, Andrea Ancillao, Christopher McCrum, S. Jun Son, Chun-Kai Huang, Alexandros Christou, Niamh Whelan, and Michelle Norris.

Force and Motion Foundation is now open to international applications. To see details, click on SCHOLARSHIPS here or above




Recent Posters

One in three individuals who suffer a lateral ankle sprain (LAS) subsequently develop chronic ankle instability. However, our inability to properly treat acute LAS is not surprising given our limited understanding of post-LAS consequences. 12 patients (21.6±2.9yrs; 172.9±13.1cm; 79.1±21.4kg) with an acute LAS participated. All participants were evaluated for dorsiflexion range of motion (DFROM), time-to-boundary (TTB) in single limb balance (SLB), and self-reported function (SRF) at 1-week, 2-weeks, 4-weeks, 6-weeks, and 8-weeks post injury. Both the involved and uninvolved limbs were measured during the patients first test session. DFROM was assessed using the weight-bearing lunge test and all participants performed 3, 10s of single limb stance with eyes open on a force plate to measure their single limb balance. SRF was measured using the Foot and Ankle Ability Measure (FAAM) and FAAM-Sport (FAAM-S). Post injury time points were compared to a control condition using multivariate ANOVAs (α=0.05). Relative to the control condition, FAAM and FAAM-S were significantly lower at 1-week and 2-weeks post injury. The FAAM-S was also significantly lower score compare to control condition at 4-weeks post-injury. Both FAAM and FAAM-S were not significant different at 6-weeks post-injury. Post-injury TTB measures and DFROM were not significantly different from the control condition. Non-significant declines in DFROM and TTB were observed as in this sample of acute LAS and appear to present with unique recovery patterns. Different recovery patterns among the tested outcomes indicate the need for further research with a larger cohort and for a longer post-injury duration.

Strength measurements are popular in the clinical practice to evaluate the health status of patients and quantify the outcome of training programs. Currently a common method to measure strength is based on Hand Held Dynamometers (HHD) which is operator-dependent. Some studies were conducted on repeatability of strength measurements but they were limited to the statistical analysis of repeated measurements of force. In this work, the authors developed a methodology to study the quality of knee flexion/extension strength measurements by measuring the effective HHD position and orientation with respect to the patient. HHD positioning attitude was measured by means of an Optoelectronic System for which a marker protocol was defined ad-hoc. The approach allowed to assess quality of measurements and operator’s ability by means of quantitative indices. The protocol permitted the evaluation of: angles of HHD application, angular range of motion of the knee and range of motion of the HHD. RMSE parameters allowed to quantify the inaccuracy associated to the selected indices. Results showed that the operator was not able to keep the subject’s limb completely still. The force exerted by the subject was higher in knee extension and the knee range of motion was higher than expected, however the operator had more difficulties in holding the HHD in knee flexion trials. This work showed that HHD positioning should be as accurate as possible, as it plays an important role for the strength evaluation. Moreover, the operator should be properly trained and should be strong enough to counteract the force of the subject.

Patients with unilateral peripheral vestibular disorder (UPVD) have diminished postural stability and therefore the aim of this study was to examine the contribution of multiple sensory systems to postural control in UPVD. Seventeen adults with UPVD and 17 healthy controls participated in this study. Centre of pressure (COP) trajectories were assessed using a force plate during six standing tasks: Forwards and backwards leaning, and standing with and without Achilles tendon vibration, each with eyes open and eyes closed. Postural stability was evaluated over 30s by means of: total COP excursion distance (COPPath) and the distances between the most anterior and posterior points of the COPPath and the anterior and posterior anatomical boundaries of the base of support (COPAmin and COPPmin). In addition, the corrected COPAmin and COPPmin was assessed by taking the corrected base of support boundaries into account using the anterior and posterior COP data from the leaning tasks. UPVD patients showed a tendency for smaller limits of stability during the leaning tasks in both directions. Subject group and task condition effects were found (P<0.05) for COPPath, (i.e. higher values for patients compared to controls). UPVD patients showed lower (P<0.05) COPPmin values compared to the control group for all conditions (more pronounced with the corrected COPPmin). Disturbance of the visual system alone lead to a distinct postural backward sway in both subject groups which became significantly more pronounced in combination with Achilles tendon vibration. The individual limits of stability should be considered in future research when conducting posturographic measurements.

2015-2016 $10,000 Academic Scholarship Applications has begun


The Force and Motion Foundation is pleased to announce the beginning of the 2015-2016 Scholarship program.  Please feel free to apply.  We are eager to see what stimulating research and ideas will be proposed this cycle.




The Force and Motion Foundation winners of the 2014-2015 Force and Motion Scholarship program.  Our heartiest Congratulations to:

Nicole Ramo from Colorado State University 

Robert Zondervan from Michigan State University


Paria Vakil from the University of Calgary